DirtyCred: Escalating Privilege in
Linux Kernel

Zhenpeng Lin, Yuhang Wu, Xinyu Xing

{OAQESJXO% h

G Northwestern
SIS G5 2 . .

27 University

ACM CCS 2022

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error

* Type confusion and memory overlap

Type A Type C Controlled Region
Type B Type B T c
ype
Type B Allocated Region Type A Type A

(a) Type confusion between Type A and B (b) Partial overlap between Type C and A

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

Type A Type C Controlled Region
Type B Type B
Type C Type A Type A
Type B Allocated Region

(a) Type confusion between Type A and B (b) Partial overlap between Type C and A

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error
Obtain Primitives

 Type confusion and memory overlap
» Leak kernel pointers

 Tamper kernel pointers
Type C Controlled Region

Type C
Allocated Region

fptr| Type A Type A

Partial overlap between Type C and A

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

» Leak kernel pointers
| Bypass Mitigation
 Tamper kernel pointers

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error
Obtain Primitives

» Type confusion and memory overlap
» Leak kernel pointers

| Bypass Mitigation
 Tamper kernel pointers

 Execute ROP in different formsy

[1] Joy of exploiting the kernel

http://slides.kernel.kitchen/

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error
Obtain Primitives

» Type confusion and memory overlap
» Leak kernel pointers

| Bypass Mitigation
 Tamper kernel pointers

* Execute ROP in different forms Escalate Privilege

[1] Joy of exploiting the kernel

http://slides.kernel.kitchen/

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error
Obtain Primitives

» Type confusion and memory overlap
» Leak kernel pointers

| Bypass Mitigation
 Tamper kernel pointers

* Execute ROP in different forms Escalate Privilege

Used by 15/17 exploits in [2]

[1] Joy of exploiting the kernel [2] Kernel Exploit Recipes Notebook

http://slides.kernel.kitchen/
https://docs.google.com/document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit

Northwestern

How DirtyCred Exploits Kernel Vulns

» Spatial/Temporal memory error
* Type confusion and overlap

» Leak kernel pointers

 Tamper kernel pointers

» Execute ROP

Northwestern

How DirtyCred Exploits Kernel Vulns

» Spatial/Temporal memory error
| Obtain Primitives
» Type confusion and memory overlap
» Leak kernel pointers
 Tamper kernel pointers

 Execute ROP

Northwestern

How DirtyCred Exploits Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

Northwestern

How DirtyCred Exploit Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

« Swap kernel credentials Escalate Privilege

Northwestern

Kernel Credential

* Properties that carry privilege information in kernel

» Defined in kernel documentation
* Representation of privilege and capability

» Two main types: task credentials and open file credentials

Source: https://www.kernel.org/doc/Documentation/security/credentials.txt

Northwestern

e Struct

Task Credential

cred In Linux kernel's implementation

struct cred {

#define
#define
#endif

atomic_t usage;
#ifdef CONFIG_DEBUG_CREDENTIALS
atomic_t subscribers;
void *put_addr;
unsigned magic;
CRED_MAGIC 0x43736564
CRED MAGIC_DEAD 0x44656144
kuid_t uid;
kgid_t gid;
kuid t suid;
kgid_t sgid;
kuid_t euid;
kgid_t egid;
kuid_t fsuid;
kgid_t fsgid;

/*

/*
/*
/*
/*
/*
/*
/*
/*

number of processes subscribed */

real UID of the task */

real GID of the task */
saved UID of the task */
saved GID of the task */
effective UID of the task */
effective GID of the task */
UID for VFS ops */

GID for VFS ops */

Northwestern

Task Credential

 Struct cred In Linux kernel's implementation

* Represents the privilege of kernel tasks

N ey

un- freed) privileged

R privileged privileged

Task Credential on kernel heap

Northwestern

How Linux Kernel Uses Task Credential

User Space
Privileged Operation Error
a P R
un- .
Kernel freed s privileged

Task Credential
8 Yy

Northwestern

How Linux Kernel Uses Task Credential

User Space
Privileged Operation Succ
a “«)
un- .
Kernel freed s privileged

Task Credential
8 Yy

Northwestern

Open File Credential

« Struct file in Linux kernel’'s implementation

struct file {

union {
struct llist_node f llist;
struct rcu_head f_rcuhead;
unsigned int f _iocb_flags;

}i

struct path f_path;

struct inode *f inode; /* cac

const struct file_operations *£f op;

/*

* Protects f ep, f flags.
* Must not be taken from IRQ context.

*/

spinlock_t f_lock;
atomic_long_t f _count;
unsigned int f flags;
fmode_t f_mode;
struct mutex £ _pos_lock;
loff_t f_pos;
struct fown struct f owner;
const struct cred *f=cred;

struct file_ra_state f_ra;

Northwestern

Open File Credential

» Carries the information of opened files (e.g. mode, path, efc.)

open(“/tmp/a”, O_RDWR)

open(“/tmp/a”, O_RDONLY)

N

open(“/etc/passwd”’, O_RDONLY)

—

freed

/tmp/a

/tmp/a

letcl
passwd

Open File Credential on kernel heap

Read-write file

Read-only file

Northwestern

How Linux Kernel Uses Open File Credential

User Space
Write “Oxdeadbeef” to
the opened file Suce
4 v)

letc/) -
Kernel Itmpla passwd freed Read-only file

S~~——— : :
: : Read-write file

Open File Credential

_ J

Northwestern

How Linux Kernel Uses Open File Credential

User Space
Write “Oxdeadbeef” to
the opened file Error
e P h
letc/) -
Ker& Itmpla passwd freed Read-only file
— _ Read-write file
Open File Credential

_ J

Northwestern

Attacking Task Credential

............. User Space

a ')

un- . .
Kernel freed privileged privileged

Task Credential
_ _J

Northwestern

Attacking Task Credential

Step 1. Free the unprivileged credential with the vulnerability

............. User Space

4 "3,)
AP
Task Credential

_ _J

privileged

Kernel Rl o

d

Northwestern

Attacking Task Credential

Step 1. Free the unprivileged credential with the vulnerability

............. User Space

4 ')

Kernel freed freed |privileged

Task Credential
_ _J

Northwestern

Attacking Task Credential

Step 2. Allocate a privileged credential in the freed memory
slot

............. User Space

4 ')

Kernel freed |privileged |privileged

Task Credential
_ _J

Northwestern

Attacking Task Credential

Result: Becoming a privileged user

User Space
Privileged Operation /
—\ 3 A
Kernel freed |privileged |privileged

Task Credential
_ _J

Northwestern

Attacking Task Credential

Result: Becoming a privileged user

User Space

-
S
*
*
*
*
*
*
*
*
*
*
*
*
.
.
LS
.
.
Fy
\J
.
.
.

Privileged Operation / 3 Succ
N/

~

Kernel freed |privileged |privileged

Task Credential
_ _J

Northwestern

Attacking Open File Credential

User Space
Write Syscall (‘
N\ P ™
Kernel Itmp/a Itmp/a freed Read-only file
\0pen £ TF U Read-write file

8 D

Northwestern

Attacking Open File Credential

Step 1. Free a read-write file after checks, but before writing to
disk

User Space

Write Syscall (

T\ \
a .

Ke r& ftmpla M freed Read-only file

__——v Readwrite fil

Open File Credential ead-write file

_ _J

Northwestern

Attacking Open File Credential

Step 1. Free a read-write file after checks, but before writing to

disk
User Space
Write Syscall (‘
(N 3 N
Kernel [tmpl/a ltr:pl freed| freed Read-only file
. : Read-write file
Open File Credential

_ _J

Northwestern

Attacking Open File Credential

Step 2. Allocate a read-only file in the freed memory slot

User Space
Write Syscall (‘
(N " ~
Itmpl| letc/) ,
Kernel ftmpla |77 aes| freed Read-only file
T — : Read-write file
Open File Credential

_ _J

Northwestern

Attacking Open File Credential

Result: Writing content to read-only files

User Space
Write Syscall Supcessfully
written to /etc/passwd
N/ ‘- D
Kernel il /trgpl éeat:sl; freed Read-only file
T — : Read-write file
Open File Credential

_ _J

Northwestern

Challenges

1. How to free credentials.

2. How to allocate privileged credentials as unprivileged users.

(attacking task credentials)

3. How to finish attack in a small time window. (attacking open
file credentials)

Northwestern

Challenges

1. How to free credentials.

Northwestern

Challenge 1: Free Credentials Invalidly

* Both cred and file object are in dedicated caches

* Most vulnerabilities happens in generic caches

Northwestern

Challenges

2. How to allocate privileged credentials as unprivileged users.

(attacking task credentials)

Northwestern

Challenge 2: Allocating Privileged Task Credentials

* Unprivileged users come with unprivileged task credentials

» Waiting privileged users to allocate task credentials
influences the success rate

Northwestern

Challenges

3. How to finish attack in a small time window. (attacking open
file credentials)

Northwestern

Challenge 3: Wining the race

» Kernel will examine the access permission before writing to the

disk
User Space
Check perm
Write Syscall(3 Succ
N 7 ‘- D
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
\ ——» _ _
. : Read-write file
l Open File Credential
& _J

Northwestern

Challenge 3: Wining the race

* The swap of file object happens before permission check

Swapping User Space
|
Check perm
Write Syscall('
T\ 2 N
: : letc/) :
Write to disk Kernel tmpla passwd freed Read-only file
T — : Read-write file
Open File Credential
& _J

Northwestern

Challenge 3: Wining the race

* The swap of file object happens before permission check

Swapping User Space
Ghock o
Write Sysca” (3 Error
N7 ‘-)
Write to disk Kernel ftmpla | ;ztsf'/v o | freed Read-only file
T — : Read-write file
Open File Credential
. _

Northwestern

Challenge 3: Wining the race

* The swap of file object happens before permission check

Swapping User Space
Checkpem
Write Sysca” (3 Error
N/ 2 A
- Kernel [tmpl/a péztsilv d freed Read-only file
T — : Read-write file
Open File Credential
. Y,

Northwestern

Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall('
T\ 3)
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
1 . \ — . .
: . Read-write file
Swapping Open File Credential
v . Y

Northwestern

Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall('
T\ 2 R
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
. ; Read-write file
l Open File Credential
_ _J

Northwestern

Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall(3 Succ
N 7 ‘- D
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
. : Read-write file
l Open File Credential
& J

Northwestern

Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall(3 Succ
N 7 ‘-)
Write to disk Kernel ftmpla | :;tgv o | freed Read-only file
I . \ - . .
: : Read-write file
Swapping Open File Credential
v . Y

Northwestern

Challenge 3: Wining the race

* The swap happens in between permission check and file write

User Space
Check perm
Write Syscall('
T\ 2 R
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
. ; Read-write file
l Open File Credential
_ _J

Northwestern

Challenge 3: Wining the race

* The swap happens in between permission check and file write

User Space
Check perm
I Write Syscall('
Swapping
: : letc/) :
Write to disk Kernel tmpla passwd freed Read-only file
T — : Read-write file
Open File Credential
& _J

Northwestern

Challenge 3: Wining the race

* The swap happens in between permission check and file write

User Space
Check perm
I Write Syscall(3 Succ
Swapping
| N 7 : D
Write to disk Kernel ftmpla | :;tgv o | freed Read-only file
T — : Read-write file
Open File Credential
_ _J

Northwestern

Challenge 3: Wining the race

* The swap must happen after permission check and before file

write
User Space
Check perm
Write Syscall(“
The time windgw
"\ : \
Write to disk Kernel ftmpla | /tmpla | freed Read-only file
Read-write fil
l Open File Credential ead-write file
- J

Northwestern

e Ad
dress The Chall
enges

ng privileg® in LinuX Keme\

7Zhenpe Yuhang Kiny Xing
2plin@% bl stern.€ uhang: @ estem.edu yu estern-€
stern U jversity Northr Umvers'xty Northw University
ABSTRAC C
Th kernel yulne ility irtyPip to be resent 1 owadays: Tas beco opular arge excrooks
pearly all versi 5 g erability abad uetoits?) pile & s, 10 astructur®
acto coul A il t ¢ trigger™ xisting dWeb s cure 1 develop! security
kern! loit mitigatio™ g this v \nemb‘\l— experts introduce a varl fkeme\ P ection ploit
ity paruic oncer Howeveh ucces of 1rtyPipe ation te€ ues (& R 14 £1 (19 kerne
cploita! Jies o0 eral > capa! y (e xp\mtanon Tof fill Joitatio® go
injecti® pitral 0 ’s pi s) Such success day’ 10! 1dentify th owerf. er-
an ability een ke era\)i\mes, King el VU S the ¢ dis espond’m
the de tively © Y as sers the rotect mmgahon
ulnerd! elatively secw However arecent vu\nerabi\'\ty (cata\oged as C\IE-ZOZZ—OSAJ oY
This WOL pOSe Joitation metho _Dirt Cred and its &P jration are getd i attentio? from
pusb'mg her 1 vl yad to th 3 of Dirty?" the cyber ecurity Because s malic ousness
Tec cally L el vuine ilitys ympact: jpwas € ed a0 irtyPip \‘U“hke
exp\m\an d s npnvﬁeg dpr‘wx\ege ernel €€ pon-br Ak 3 bilities pe’s eX tion fulfill
dentials &2 pr er with th tyP e-like pnvﬁ 0 wil eff of disab gbmad\y
p\oxtab ity) Abili tor ul obtain adopte ke prote tigation acteris”
the 2bil rivileg! 4 even €8 pe ontainet: We tic res! i defens® ffecti eandt leads ™ y
yaluate Joita! on d kernel vul- Linux- 1-driven S (e d dev'\ces)
nerabili rotect syste 5CO ered that file DIrYY p yful, oitability Josely tie!
DirtyCré e ility N cabilities: e vOIne < capabli®y (e g v Kernel pipe
Lyin D ed h \oitabil mechanis t Jdata to &% y fil s). For other ux kerne
ity assess™ X further P kernel defens vu\nemb\lme , suc busive ity is 187 rovide a
mech X 1 defenses: defense results the ac Linw unit vice manu”
xso\atesk denti bie overlapp mory ¥ facmrers(\e) 3t atch 28 kernel ug
jons bas P ge. OU* P Lt shows rapidly the at x surfac® (hout th attac!
at the defense t s Pr i\ Yigibl overhed surface ploitd 5 rotected rnel i
(i)l challe g, 1 vl ilities: ¥ il difficult
as Di

. secunity and ptivacy — Operating systems securitys Software
security engineering;
KEYWORDS e, our exPOY a-t'or}m 0d 18 eren! com DIty pe- 1t
. - R . 3\ eline chant £ Linu¥ nor the pature of the
[o~] gecuritys Kernel Exp\mtamm; privileg® gscalatio® N inerab : CV'E—'ZOZZ—O% 47, Insted it sonploys & hea memory

ACM Reference Format:

Northwestern

Real-World Impact of DirtyCred

« CVE-2021-4154
* Received rewards from Google’'s KCTF

* The exploit works across kernel v4.18 ~ v5.10
e CVE-2022-2588
* Pwn2own exploitation
* The exploit works across kernel v3.17 ~ v5.19
« CVE-2022-20409
* Received rewards from Google’s KCTF and Android
* The exploit works on both Android and generic Linux kernel

https://github.com/Markakd/CVE-2021-4154
https://github.com/Markakd/CVE-2022-2588

Northwestern

Defense Against DirtyCred

* Fundamental problem

* Object isolation is based on type not privilege
e Solution

* |solate privileged credentials from unprivileged ones
* Where to isolate?

* Virtual memory (privileged credentials will be vmalloc-ed)

All codes are available at https://qithub.com/markakd/DirtyCred

https://github.com/markakd/DirtyCred

Northwestern

Summary

* A new exploitation concept — DirtyCred
* Principled approaches to different challenges -
A way to produce Universal kernel exploits .,"fef 2

o Effective defense with negligible overhead

Zhenpeng Lin (@Markak)

https://zplin.me g PR

20 EIDL B

zplin@u.northwestern.edu

Logo comes from @sirdarckcat

https://twitter.com/markak_?lang=en
https://zplin.me
https://twitter.com/sirdarckcat

