
GREBE: Unveiling Exploitation 
Potential for Linux Kernel Bugs

Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang Mu, Chensheng Yu, 
Xinyu Xing, Kang Li



Linux Kernel is Security-Critical but Buggy

Security-Critical
- 85% smartphones run on Linux kernel
- ~39% websites are powered by Linux kernel
- etc

Buggy
- Syzbot reported ~5k bugs in past 4 years
- ~1k bugs are still unfixed
- Often gets pwned at Pwn2Own



Knowing Exploitability is Important but Challenging

Guide the design of hardening
- Eliminate exploit component

Promote bug fix and fix adoption
- Severe bugs not fixed in upstream
- Severe bugs fixed in upstream, unfixed in vendor’s kernel

Knowing true exploitability is hard
- Kernel is complex
- Writing exploits is time-consuming



Practical Exploitability Assessment

Approximate the exploitability
- Likely to exploit : UAF/OOB/DF

- Less Likely to exploit : GPF/Null Ptr Dereference/BUG/WARN/INFO



Approximation May Underestimate Exploitability

- A severe bug may not show memory corruption capability

- A severe bug may only show limited memory corruption capability



A Real-World Example — CVE-2021-3715

- Reported as a warning error by Syzbot

- Fixed in upstream kernel, but unfixed in some vendors’ kernel

- No CVE assigned, no discussion, no public exploit



A Real-World Example — CVE-2021-3715

- Reported as a warning error by Syzbot

- Fixed in upstream kernel, but unfixed in some vendors’ kernel

- No CVE assigned, no discussion, no public exploit

- UAF error identified by our tool — GREBE and being exploited by us

- Responsibly disclosed to RedHat

- RedHat notified affected vendors and CVE assigned



User space

Kernel space

Kernel Bugs Have Multiple Error Behaviors

- CVE-2021-3715 shows warning error 
and UAF error.

- With the same root cause, different
inputs causing different errors.

sys
cal
l_A

sys
cal
l_C

sys
cal
l_B

crash

Root cause



Kernel Bugs Have Multiple Error Behaviors

sys
cal
l_A

sys
cal
l_CUser space

Kernel space sys
cal
l_B

crash

Root cause

- CVE-2021-3715 shows warning error 
and UAF error.

- With the same root cause, different
inputs causing different errors.



GREBE: An Object-driven Kernel Fuzzer

Insight
- Linux kernel implementation is object-oriented
- Operation on kernel objects are necessary to 

trigger the bug
- Data in kernel propagate through kernel objects

sys
cal
l_A

sys
cal
l_C

sys
cal
l_BUser space

Kernel space

obj_a

Allocation
site

Use site

Root cause
obj_b



GREBE: An Object-driven Kernel Fuzzer

Insight
- Linux kernel implementation is object-oriented
- Operation on kernel objects are necessary to 

trigger the bug
- Data in kernel propagate through kernel objects

GREBE’s solution in High-level
- Identify critical kernel objects given the bug 

report
- Guide the kernel fuzzing with the objects

- set up context
- bound fuzzing

sys
cal
l_A

sys
cal
l_C

sys
cal
l_BUser space

Kernel space

obj_a

Allocation
site

Use site

Root cause

crash



Backward Taint Analysis to Identify Critical Objects

Taint source identification
- Kernel complains when checks unsatisfied
- Use variables in the checking conditions as taint source



Backward Taint Analysis to Identify Critical Object

Taint propagation
- Taint to parent structure variables
- Taint to loop counter

base = READ_ONCE(timer->base)

hrtimer_cancel(&tfile->napi->timer)

hrtimer_try_to_cancel(timer)



Backward Taint Analysis to Identify Critical Object

Taint sink
- The definition of a variable
- Syscall entry, or interrupt handler



Backward Taint Analysis to Identify Critical Object

Taint sink
- The definition of a variable
- Syscall entry, or interrupt handler

Object filtering
- Object popularity ranking
- Filter out “popular” objects
- More details in our paper



Object-driven Kernel Fuzzing

- Instrument basic blocks involved with critical objects

- Maximize object coverage instead of code coverage



Experiment

Setup
- Used 60 kernel bugs (2017-2021)
- Compared with Syzkaller
- Manually triage the results

Results
- Exploitability escalation

- From “less likely to exploit” to “likely to exploit”
- GREBE (26) vs. Syzkaller (4) 

- More exploit potential
- From one “likely to exploit” to more “likely to exploit”
- GREBE (8) vs. Syzkaller (1)



Takeaway

- A kernel bug could have Multiple Error Behaviors (MEB).

- Exposing MEB contributes to more precise exploitability estimation.

- Utilizing kernel objects to find MEB is effective and efficient.

GREBE is available at: https://github.com/Markakd/GREBE

zplin@u.northwestern.edu
https://zplin.me

https://github.com/Markakd/GREBE
https://zplin.me/

