GREBE: Unveliling Exploitation
Potential for Linux Kernel Bugs

Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang Mu, Chensheng Yu,
Xinyu Xing, Kang Li

Linux Kernel is Security-Critical but Buggy
syzbot ..« ®©

Security-Critical

- 85% smartphones run on Linux kernel ﬁ e
& Open [960]| | &% Fixed [3804]

- ~39% websites are powered by Linux kernel

- efc

Buggy
- Syzbot reported ~5k bugs in past 4 years

- ~1k bugs are still unfixed
- Often gets pwned at Pwn20wn

Knowing Exploitability is Important but Challenging

Guide the design of hardening

Promote bug fix and fix adoption

Knowing true exploitability is hard

Eliminate exploit component

Severe bugs not fixed in upstream

¥ Roses are red, Violets are blue @ Giving leets /% more

sweets @_All of 2022!
February 14, 2022

Posted by Eduardo Vela, Vulnerability Matchmaker

Until December 31 2022 we will payIZ0,000 t0 91,337 US[ifor exploits of vulnerabilities

in the Linux Kernel, Kubernetes, GKE or kCTF that are exploitable on our test lab.

Severe bugs fixed in upstream, unfixed in vendor’s kernel

Kernel is complex
Writing exploits is time-consuming

Practical Exploitability Assessment

Approximate the exploitability
- Likely to exploit : UAF/OOB/DF
- Less Likely to exploit : GPF/Null Ptr Dereference/BUG/WARN/INFO

Level Type Example CVSS Score

KASAN (e.g., use-after-free, 6.2

0 Exploit Kernel double-free, out-of-bound access)

1 Terminate Process | BUG, GPF, NULL ptr dereference 5.3

2 Logging Errors WARN, wrappers (e.g., pr_err) 1.9

Approximation May Underestimate Exploitability

- A severe bug may not show memory corruption capability

- A severe bug may only show limited memory corruption capability

A Real-World Example — CVE-2021-3715

- Reported as a warning error by Syzbot
- Fixed in upstream kernel, but unfixed in some vendors’ kernel

- No CVE assigned, no discussion, no public exploit

A Real-World Example — CVE-2021-3715

- Reported as a warning error by Syzbot

- Fixed in upstream kernel, but unfixed in some vendors’ kernel

- No CVE assigned, no discussion, no public exploit

- UAF error identified by our tool — GREBE and being exploited by us
- Responsibly disclosed to RedHat

- RedHat notified affected vendors and CVE assigned

Kernel Bugs Have Multiple Error Behaviors

CVE-2021-3715 shows warning error
and UAF error.

With the same root cause, different
inputs causing different errors.

Kernel Bugs Have Multiple Error Behaviors

CVE-2021-3715 shows warning error
and UAF error.

With the same root cause, different
inputs causing different errors.

GREBE: An Object-driven Kernel Fuzzer

User space

Insight
- Linux kernel implementation is object-oriented

- Operation on kernel objects are necessary to
trigger the bug

- Data in kernel propagate through kernel objects

Kernel space

GREBE: An Object-driven Kernel Fuzzer

User space

Insight
- Linux kernel implementation is object-oriented

- Operation on kernel objects are necessary to
trigger the bug

- Data in kernel propagate through kernel objects

GREBE's solution in High-level

- ldentify critical kernel objects given the bug

Kernel space

report ‘ Root cause
- Guide the kernel fuzzing with the objects _
- set up context O Use site

- bound fuzzing

Backward Taint Analysis to Identify Critical Objects

Taint source identification

Kernel complains when checks unsatisfied
Use variables in the checking conditions as taint source

// in drivers/vhost/vhost.c
void vhost_dev_cleanup (struct vhost_dev xdev)

{

// source code
walk->offset = sg->offset;

WARN_ON (!1list_empty (&dev—>work_1list]));

if (dev->worker) {
kthread_ stop (dev->worker) ;
dev->worker = NULL;
dev->kcov_handle = 0;

// pseudo binary code after instrumentation
kasan_check_read (§sg—>offset|, sizeof (var));

tmp = LOAD (&sg->offset, sizeof(var)); // first access
kasan_check_write (&walk->o0ffset]| sizeof (var));

STORE (tmp, &walk->offset); // second access

O VW oo JdJoy U WDN R

0 J oy b WDN K

=

Backward Taint Analysis to Identify Critical Object

Taint propagation
- Taint to parent structure variables
- Taint to loop counter

hrtimer_cancel(&tfile=>napi->timer)

}

1|[int func() {

2 for (int i=0; i<vuln->size; i++) {

3 // buffer overflow in vuln->buff
hrtimer_try _to_cancel(timer) g vuln—>buff[i] = src[Jj++];

6

base = READ ONCE(timer->base)

Backward Taint Analysis to Identify Critical Object

Taint sink
- The definition of a variable
- Syscall entry, or interrupt handler

Backward Taint Analysis to Identify Critical Object

Taint sink
- The definition of a variable
- Syscall entry, or interrupt handler

Object filtering

- Object popularity ranking
- Filter out “popular” objects
- More details in our paper

Object-driven Kernel Fuzzing

- Instrument basic blocks involved with critical objects

- Maximize object coverage instead of code coverage

Experiment

Setup
GREBE Syzkaller
- Used 60 kernel bugs (2017-2021) 20
- Compared with Syzkaller
- Manually triage the results 20
Results 10

- Exploitability escalation

- From “less likely to exploit’ to “likely to exploit’ " ess "ke& to exploit” "Likely to 'exploit.. to
- GREBE (26) Vs. Syzkaller (4) to "Likely to exploit" "Likely to exploit"

- More exploit potential

- From one “likely to exploit’ to more “likely to exploit’
- GREBE (8) vs. Syzkaller (1)

Takeaway

- A kernel bug could have Multiple Error Behaviors (MEB).
- Exposing MEB contributes to more precise exploitability estimation.

- Utilizing kernel objects to find MEB is effective and efficient.

GREBE is available at: https://github.com/Markakd/GREBE

zplin@u.northwestern.edu
https://zplin.me

https://github.com/Markakd/GREBE
https://zplin.me/

