DirtyCred: Escalating Privilege In
Linux Kernel

Zhenpeng Lin

11/07/2022



Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error

* Type confusion and memory overlap

Type A Type C Controlled Region
Type B Type B T c
ype
Type B Allocated Region Type A Type A

(a) Type confusion between Type A and B (b) Partial overlap between Type C and A



Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

Type A Type C Controlled Region
Type B Type B
Type C Type A Type A
Type B Allocated Region

(a) Type confusion between Type A and B (b) Partial overlap between Type C and A



Northwestern

How Researchers Exploit Kernel Vulns
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Obtain Primitives

 Type confusion and memory overlap
» Leak kernel pointers

 Tamper kernel pointers
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How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error
Obtain Primitives

» Type confusion and memory overlap
» Leak kernel pointers

| Bypass Mitigation
 Tamper kernel pointers

* Execute ROP in different forms Escalate Privilege

Used by 15/17 exploits in [2]

[1] Joy of exploiting the kernel [2] Kernel Exploit Recipes Notebook



http://slides.kernel.kitchen/
https://docs.google.com/document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit
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How DirtyCred Exploit Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

« Swap kernel credentials Escalate Privilege
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Kernel Credential

* Properties that carry privilege information in kernel

» Defined in kernel documentation
* Representation of privilege and capability

» Two main types: task credentials and open file credentials

» Security checks act on credential objects

Source: https://www.kernel.org/doc/Documentation/security/credentials.txt
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e Struct

Task Credential

cred In Linux kernel's implementation

struct cred {

#define
#define
#endif

atomic_t usage;
#ifdef CONFIG_DEBUG_CREDENTIALS
atomic_t subscribers;
void *put_addr;
unsigned magic;
CRED_MAGIC 0x43736564
CRED MAGIC_DEAD 0x44656144
kuid_t uid;
kgid_t gid;
kuid t suid;
kgid_t sgid;
kuid_t euid;
kgid_t egid;
kuid_t fsuid;
kgid_t fsgid;

/*

/*
/*
/*
/*
/*
/*
/*
/*

number of processes subscribed */

real UID of the task */

real GID of the task */
saved UID of the task */
saved GID of the task */
effective UID of the task */
effective GID of the task */
UID for VFS ops */

GID for VFS ops */
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Task Credential

 Struct cred In Linux kernel's implementation

* Represents the privilege of kernel tasks

N ey

un- freed ) privileged

R privileged privileged

Task Credential on kernel heap
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How Linux Kernel Uses Task Credential

User Space
Privileged Operation Error
a P R
un- .
Kernel freed s privileged

Task Credential
8 Yy
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How Linux Kernel Uses Task Credential

User Space
Privileged Operation Succ
a “« )
un- .
Kernel freed s privileged

Task Credential
8 Yy
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Open File Credential

« Struct file in Linux kernel’'s implementation

struct file {

union {
struct llist_node f llist;
struct rcu_head f_rcuhead;
unsigned int f _iocb_flags;

}i

struct path f_path;

struct inode *f inode; /* cac

const struct file_operations *£f op;

/*

* Protects f ep, f flags.
* Must not be taken from IRQ context.

*/

spinlock_t f_lock;
atomic_long_t f _count;
unsigned int f flags;
fmode_t f_mode;
struct mutex £ _pos_lock;
loff_t f_pos;
struct fown_struct f_ownmer;
const struct cred *f cred;

struct file_ra_state f_ra;
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Open File Credential

» Carries the information of opened files (e.g. mode, path, efc.)

open(“/tmp/a”, O_RDWR)

open(“/tmp/a”, O_RDONLY)

N

open(“/etc/passwd”’, O_RDONLY)

—

freed

/tmp/a

/tmp/a

letcl
passwd

Open File Credential on kernel heap

Read-write file

Read-only file
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How Linux Kernel Uses Open File Credential

User Space
Write “Oxdeadbeef” to
the opened file Suce
4 v )

letc/ ) -
Kernel Itmpla passwd freed Read-only file

S~~——— : :
: : Read-write file

Open File Credential

\_ J
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How Linux Kernel Uses Open File Credential

User Space
Write “Oxdeadbeef” to
the opened file Error
e P h
letc/ ) -
Ker& Itmpla passwd freed Read-only file
— _ Read-write file
Open File Credential

\_ J
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Attacking Task Credential

............. User Space

a ' )

un- . .
Kernel freed privileged privileged

Task Credential
\_ _J
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Attacking Task Credential

Step 1. Free the unprivileged credential with the vulnerability

............. User Space

4 "3, )
AP
Task Credential

\_ _J

privileged

Kernel Rl o

d
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Attacking Task Credential

Step 1. Free the unprivileged credential with the vulnerability

............. User Space

4 ' )

Kernel freed freed |privileged

Task Credential
\_ _J
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Attacking Task Credential

Step 2. Allocate a privileged credential in the freed memory
slot

............. User Space

4 ' )

Kernel freed |privileged |privileged

Task Credential
\_ _J
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Attacking Task Credential

Result: Becoming a privileged user

User Space
Privileged Operation /
—\ 3 A
Kernel freed |privileged |privileged

Task Credential
\_ _J
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Attacking Task Credential

Result: Becoming a privileged user

User Space

-
S
*
*
*
*
*
*
*
*
*
*
*
*
.
.
LS
.
.
Fy
\J
.
.
.

Privileged Operation / 3 Succ
N/

~

Kernel freed |privileged |privileged

Task Credential
\_ _J
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Attacking Open File Credential

User Space
Write “Oxdeadbeef” to
the opened file
N\ D A
Kernel tmpla tmpla freed Read-only file
T — : Read-write file
Open File Credential

\_ _J
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Attacking Open File Credential

Step 1. Free a read-write file after checks, but before writing to
disk

User Space

Write “Oxdeadbeef” to
the opened file

T\ \
a .

Ke r& ftmpla M freed Read-only file

__——v Readwrite fil

Open File Credential ead-write file

\_ _J
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Attacking Open File Credential

Step 1. Free a read-write file after checks, but before writing to

disk
User Space
Write “Oxdeadbeef” to
the opened file

T\ 2 A
Kernel Itmpl/a ltrgpl freed| freed Read-only file
T — _ Read-write file

Open File Credential

\_ _J
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Attacking Open File Credential

Step 2. Allocate a read-only file in the freed memory slot

User Space
Write “Oxdeadbeef” to
the opened file
N\ 2 A
Itmpl| letc/ ) :
Ker& Itmpla 8 pass freed Read-only file
— : Read-write file
Open File Credential

\_ _J
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Attacking Open File Credential

Result: Writing content to read-only files

User Space
Write “Oxdeadbeef” to Successfully x .
the opened file written to /etc/passwd
N 7 ‘- D
Itmpl| /etc/ :
Ker&/tmpla ap pass freed Read'only file
— : Read-write file
Open File Credential

\_ _J
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Challenges

1. How to free credentials.

2. How to allocate privileged credentials as unprivileged users.

(attacking task credentials)

3. How to finish attack in a small time window. (attacking open
file credentials)



Northwestern

Challenges

1. How to free credentials.



Northwestern

Challenge 1: Free Credentials Invalidly

* Both cred and file object are in dedicated caches

* Most vulnerabilities happens in generic caches
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Challenge 1: Free Credentials Invalidly

 Solution: Pivoting Vulnerability Capability
 Pivoting Invalid-Write (e.g., OOB & UAF write)

* Pivoting Invalid-Free (e.g., Double-Free)
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Pivoting Invalid-Write
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Pivoting Invalid-Write

» Leverage victim objects with a reference to credentials

Oxff...000
credential struct request_key auth {
object struct rcu_head rcu;
struct key *target key;
struct key *dest_keyring;
const struct cred *crgéﬂ
void *callout_info;

*cred credential :
object size_t callout_len;
victim pid_t pid;
| char op[81;
sl OXff...100 o

} __randomize_layout;

credential
object
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Pivoting Invalid-Write

* Manipulate the memory layout to put the cred in the overwrite

reg IOn Oxff...000 Oxff...000
credential credential
object object
overflow
object
*cred credential *cred credential
object object
victim vl victim
Selfere 0xff...100 ob object 0xff...100
credential credential
For OOB object For UAF object
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Pivoting Invalid-Write

* Partially overwrite the pointer to cause a reference unbalance

Oxff...000 Oxff...000
credential credential
object object
overflow
obje?
*cre ... credential *cré credential
"""""" object _ object
victim vl victim
Selfere 0xff...100 ob object 0xff...100
credential credential
For OOB object For UAF object
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Pivoting Invalid-Write

* Free the credential object when freeing the victim object

Oxff...000
/ rreed

credential
object

freed

Oxff...100

credential
object
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Pivoting Invalid-Free
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Pivoting Invalid-Free

* Two references to free the same object

ref_a\ﬁ‘_b

Freed | Allocated | Vuln Obj | Allocated

Vulnerable object in kernel memory
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Pivoting Invalid-Free

N\

Freed Allocated Freed Allocated

Step 1. Trigger the vuln, free the vuln object
with one reference
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Pivoting Invalid-Free

N\ N\

Freed | Allocated| Freed | Allocated Freed memory page

Step 1. Trigger the vuln, free the vuln object Step 2. Free the object in the memory cache
with one reference to free the memory page
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Pivoting Invalid-Free

N\ N\

Freed | Allocated| Freed | Allocated Freed memory page

Step 1. Trigger the vuln, free the vuln object Step 2. Free the object in the memory cache
with one reference to free the memory page

N

Credentials|Credentials|Credentials|Credentials

Step 3. Allocate credentials to reclaim the
freed memory page (Cross Cache Attack)
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Pivoting Invalid-Free

N\ N\

Freed | Allocated| Freed | Allocated Freed memory page

Step 1. Trigger the vuln, free the vuln object Step 2. Free the object in the memory cache

with one reference to free the memory page
\ p
Credentials|Credentials|Credentials|Credentials Credentials|Credentials Freeo_l Credentials
Credentials
Step 3. Allocate credentials to reclaim the Step 4. Free the credentials with the left

freed memory page (Cross Cache Attack) dangling reference
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Challenges

2. How to allocate privileged credentials as unprivileged users.

(attacking task credentials)
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Challenge 2: Allocating Privileged Task Credentials

* Unprivileged users come with unprivileged task credentials

» Waiting privileged users to allocate task credentials
influences the success rate
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Challenge 2: Allocating Privileged Task Credentials

* Solution I: Triggering Privileged Userspace Process
» Executables with root SUID (e.g. su, mount)

 Daemons running as root (e.g. sshd)
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Challenge 2: Allocating Privileged Task Credentials

e Solution ll: Triggering Privileged Kernel Thread
« Kernel Workqueue — spawn new workers

» Usermode helper — load kernel modules from userspace
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Challenges

3. How to finish attack in a small time window. (attacking open
file credentials)
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Challenge 3: Wining the race

» Kernel will examine the access permission before writing to the

disk
User Space
Check perm
Write Syscall( 3 Succ
N 7 ‘- D
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
\ ——» _ _
. : Read-write file
l Open File Credential
& _J
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Challenge 3: Wining the race

* The swap of file object happens before permission check

Swapping User Space
|
Check perm
Write Syscall( '
T\ 2 N
: : letc/ ) :
Write to disk Kernel tmpla passwd freed Read-only file
T — : Read-write file
Open File Credential
& _J
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Challenge 3: Wining the race

* The swap of file object happens before permission check

Swapping User Space
Ghock o
Write Sysca” ( 3 Error
N7 ‘- )
Write to disk Kernel ftmpla | ;ztsf'/v o | freed Read-only file
T — : Read-write file
Open File Credential
. _
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Challenge 3: Wining the race

* The swap of file object happens before permission check

Swapping User Space
Checkpem
Write Sysca” ( 3 Error
N/ 2 A
- Kernel [tmpl/a péztsilv d freed Read-only file
T — : Read-write file
Open File Credential
. Y,
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Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall( '
T\ 3 )
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
1 . \ — . .
: . Read-write file
Swapping Open File Credential
v . Y
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Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall( 3 Succ
N >
Write ’:O disk Kernel tmpla tmpla freed Read-only file
Swapping \Open ﬁe Credential Read-write file
v N _
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Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall( 3 Succ
N 7 ‘- )
Write to disk Kernel ftmpla | :;tgv o | freed Read-only file
I . \ - . .
: : Read-write file
Swapping Open File Credential
v . Y
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Challenge 3: Wining the race

* The swap happens in between permission check and file write

User Space
Check perm
Write Syscall( '
T\ 2 R
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
. ; Read-write file
l Open File Credential
_ _J
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User Space
Check perm
I Write Syscall( '
Swapping
: : letc/ ) :
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Challenge 3: Wining the race

* The swap happens in between permission check and file write

User Space
Check perm
I Write Syscall( 3 Succ
Swapping
| N 7 : D
Write to disk Kernel ftmpla | :;tgv o | freed Read-only file
T — : Read-write file
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Challenge 3: Wining the race

* The swap must happen after permission check and before file

write
User Space
Check perm
Write Syscall( “
The time windgw
"\ : \
Write to disk Kernel ftmpla | /tmpla | freed Read-only file
Read-write fil
l Open File Credential ead-write file
- J
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Challenge 3: Wining the race

e Solution I: Extending with Userfaultfd or FUSE

* Pause kernel execution when accessing userspace memory
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Solution |: Userfaultfd & FUSE

» Pause at import iovec before v4.13

* import iovec COpIes userspace memory

ssize_t vfs_writev(...)

{

// permission checks

if (!(file->f_mode & FMODE_WRITE))
return -EBADF;

if (!(file->f_mode & FMODE_CAN_WRITE))
return -EINVAL;

// import iovec to kernel, where kernel would be paused

// using userfaultfd & FUSE

res = import_iovec(type, uvector, nr_segs,
ARRAY_SIZE(iovstack), &iov, &iter);

// do file writev
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Solution |: Userfaultfd & FUSE

» Pause at import iovec before v4.13
* import iovec COpIes userspace memory

» Used in Jann Horn'’s exploitation for CVE-2016-4557
* Dead after v4.13



https://bugs.chromium.org/p/project-zero/issues/detail?id=808
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Solution |: Userfaultfd & FUSE

e vfs writev after v4.13

ssize_t vfs_writev(...)

{

// import iovec to kernel, where kernel would be paused

// using userfaultfd

res = import_iovec(type, uvector, nr_segs,
ARRAY_SIZE(iovstack), &iov, &iter);

// permission checks

if (!(file->f_mode & FMODE_WRITE))
return -EBADF;

if (!(file->f_mode & FMODE_CAN_WRITE))
return -EINVAL;

// do file writev
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Solution |: Userfaultfd & FUSE

* Pause at generic perform write

ssize_t generic_perform_write(struct file *file,

[ prefaUItS user pages ( struct iov_iter *i, loff_t pos)

* Bring in the user page that we will copy from _first_.
°® " * Otherwise there's a nasty deadlock on copying from the

Pauses kernel exeCUtlon at the * same page as we're writing to, without it being marked
* up-to-date.

*x/
page faUIt if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
status = -EFAULT;
break;
3

// call the write operation of the file system
status = a_ops->write_begin(file, mapping, pos, bytes, flags,
&page, &fsdata);



Northwestern

Challenge 3: Wining the race

* Solution ll: Extending with file lock

« Pause kernel execution with lock
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Solution ll: File Lock

* A lock of the inode of the file

* Lock the file when it is being writing to

static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,

{

struct iov_iter *from)

ssize_t ret;
struct inode *inode = file_inode(iocb->ki_filp);

inode_lock(inode);

ret = generic_perform_write(iocb->ki_filp, from,
— iocb->ki_pos);

inode_unlock(inode);

return ret;
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Solution ll: File Lock

Thread A Thread B
cnedcpem  chekper

Lock

Unlock Lock

l

—
I
Unlock

v
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Solution ll: File Lock

Thread A Thread B
cnedcpem  chekper

Lock

A large time window
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Demo Time!
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CVE-2021-4154
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| Centos 8 and Ubuntu 20

uuuuuuuuuu :~$ idf]
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Android Kernel with CFl enabled*

oriole:/data/local/tmp $

* access check removed for demonstration
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Real-World Impact

« CVE-2021-4154
* Received rewards from Google’'s KCTF

* The exploit works across kernel v4.18 ~ v5.10
e CVE-2022-2588
* Pwn2own exploitation
* The exploit works across kernel v3.17 ~ v5.19
« CVE-2022-20409
* Received rewards from Google’s KCTF and Android
* The exploit works on both Android and generic Linux kernel


https://github.com/Markakd/CVE-2021-4154
https://github.com/Markakd/CVE-2022-2588
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Advantages of DirtyCred

 Simple but effective
» Shorter exploit chain with fewer steps

* No effective mitigation
* A new exploitation path, can bypass AUTOSLAB

* No need to deal with KASLR, KCFI, KPTIl, SMAP/SMEP

 Exploitation friendly

« Make your exploit universal!
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Defense Against DirtyCred

* Fundamental problem

* Object isolation is based on type not privilege
e Solution

* |solate privileged credentials from unprivileged ones
* Where to isolate?

* Virtual memory (privileged credentials will be vmalloc-ed)

Code is available at https://github.com/markakd/DirtyCred



https://github.com/markakd/DirtyCred
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Overhead of The Defense

Benchmark Vanilla Hardened Overhead
Phoronix
Apache (Regs/s) 28603.29 29216.48 -2.14%
Sys-RAM (MB/s) 10320.08 10181.91 1.34%
Sys-CPU (Events/s) 4778.41 4776.69 0.04%
FFmpeg(s) 7.456 7.499 0.58%
OpenSSL (Byte/s) 1149941360 1150926390 -0.09%
OpenSSL (Sign/s) 997.2 993.2 0.40%
PHPBench (Score) 571583 571037 0.09%
PyBench (ms) 1303 1311 0.61%
GIMP (s) 12.357 12.347 -0.08%
PostMark (TPS) 5034 5034 0%
LMBench
Context Switch (ms) 2.60 2.57 -1.15%
UDP (ms) 9.2 9.26 0.65%
TCP (ms) 12.75 12.73 -0.16%
10k File Create (ms) 13.8 14.79 7.17%
10k File Delete (ms) 6.35 6.62 4.25%
Mmap (ms) 80.23 81.91 2.09%
Pipe (MB/s) 4125.3 4028.9 2.34%
AF Unix (MB/s) 8423.5 8396.7 0.32%
TCP (MBY/s) 6767.4 6693.3 1.09%
File Reread (MB/s) 8380.43 8380.65 0%
Mmap Reread (MB/s) 15.7K 15.69K 0.06%
Mem Read (MB/s) 10.9K 10.9K 0%

Mem Write (MB/s) 10.76K 10.77K -0.09%
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Takeaways

* A new exploitation concept — DirtyCred
* Principled approaches to different challenges -
A way to produce Universal kernel exploits .,"fef 2

o Effective defense with negligible overhead

Zhenpeng Lin (@Markak )

https://zplin.me g PR

20 EIDL B

zplin@u.northwestern.edu

Logo comes from @sirdarckcat



https://twitter.com/markak_?lang=en
https://zplin.me
https://twitter.com/sirdarckcat

