DirtyCred: Escalating Privilege in Linux Kernel

Zhenpeng Lin

11/07/2022

- Spatial/Temporal memory error
- Type confusion and memory overlap

(b) Partial overlap between Type C and A

Spatial/Temporal memory error

Type confusion and memory overlap

Type C Controlled Region		
Type C Allocated Region	Туре А	

(b) Partial overlap between Type C and A

- Spatial/Temporal memory error
- Type confusion and memory overlap
- Leak kernel pointers
- Tamper kernel pointers

Partial overlap between Type C and A

Type A

Spatial/Temporal memory error

Type confusion and memory overlap

Leak kernel pointers

Tamper kernel pointers

Obtain Primitives

Spatial/Temporal memory error

Type confusion and memory overlap

- Leak kernel pointers
- Tamper kernel pointers
- Execute ROP in different forms[1]

[1] Joy of exploiting the kernel

Spatial/Temporal memory error

Type confusion and memory overlap

- Leak kernel pointers
- Tamper kernel pointers

Execute ROP in different forms[1]

Escalate Privilege

[1] Joy of exploiting the kernel

Spatial/Temporal memory error

Type confusion and memory overlap

Leak kernel pointers

Tamper kernel pointers

Execute ROP in different forms[1]

Escalate Privilege

Used by 15/17 exploits in [2]

[1] <u>Joy of exploiting the kernel</u>

How DirtyCred Exploits Kernel Vulns

- Spatial/Temporal memory error
- Type confusion and overlap
- Leak kernel pointers
- Tamper kernel pointers
- Execute ROP

How DirtyCred Exploits Kernel Vulns

- Spatial/Temporal memory error
- Type confusion and memory overlap
- Leak kernel pointers
- Tamper kernel pointers
- Execute ROP

Obtain Primitives

How DirtyCred Exploits Kernel Vulns

Spatial/Temporal memory error

Type confusion and memory overlap

- Leak kernel pointers
- Tamper kernel pointers
- Execute ROP

Obtain Primitives

How DirtyCred Exploit Kernel Vulns

- Spatial/Temporal memory error
- Type confusion and memory overlap

Swap kernel credentials

Escalate Privilege

Obtain Primitives

Kernel Credential

- Properties that carry privilege information in kernel
 - Defined in kernel documentation
 - Representation of privilege and capability
 - Two main types: task credentials and open file credentials
 - Security checks act on credential objects

Source: https://www.kernel.org/doc/Documentation/security/credentials.txt

Task Credential

• Struct cred in Linux kernel's implementation

struct	cred {		
	atomic_t	usage;	
#ifdef (CONFIG_DEBUG_CREI	DENTIALS	
	atomic_t	<pre>subscribers;</pre>	<pre>/* number of processes subscribed</pre>
	void	<pre>*put_addr;</pre>	
	unsigned	magic;	
#define	CRED_MAGIC	0x43736564	
#define	CRED_MAGIC_DEAD	0x44656144	
#endif			
	kuid_t	uid;	/* real UID of the task */
	kgid_t	gid;	/* real GID of the task */
	kuid_t	suid;	/* saved UID of the task */
	kgid_t	sgid;	/* saved GID of the task */
	kuid_t	euid;	/* effective UID of the task */
	kgid_t	egid;	/* effective GID of the task */
	kuid_t	fsuid;	/* UID for VFS ops */
	kgid_t	fsgid;	/* GID for VFS ops */
	· · ·		· - ·

*/

Task Credential

- Struct cred in Linux kernel's implementation
- Represents the *privilege* of kernel tasks

Task Credential on kernel heap

How Linux Kernel Uses Task Credential

How Linux Kernel Uses Task Credential

Open File Credential

• Struct file in Linux kernel's implementation

struct	<pre>file { union {</pre>			
	-			
	struct llist_no			
	struct rcu_head			
	unsigned int	<pre>f_iocb_flags;</pre>		
	};			
	struct path	f_path;		
	struct inode	<pre>*f_inode; /* cad</pre>		
const struct file_operations *f_op;				
	/*			
	* Protects f_ep, f_fla	gs.		
	* Must not be taken fr	om IRQ context.		
	*/			
	spinlock_t	f_lock;		
	atomic_long_t	f_count;		
	unsigned int	f flags;		
	fmode_t	f_mode;		
	struct mutex	f_pos_lock;		
	loff_t	f_pos;		
	struct fown_struct	f_owner;		
	const struct cred	*f_cred;		
	struct file_ra_state	f_ra;		

Open File Credential

• Carries the information of opened files (*e.g.* mode, path, *etc.*)

Open File Credential on kernel heap

Read-write file

Read-only file

How Linux Kernel Uses Open File Credential

How Linux Kernel Uses Open File Credential

Step 1. Free the *unprivileged* credential with the vulnerability

Step 1. Free the *unprivileged* credential with the vulnerability

Step 2. Allocate a privileged credential in the freed memory

slot

Result: Becoming a *privileged* user

Result: Becoming a *privileged* user

Step 1. Free a read-write file after checks, but before writing to

disk

al e writing to

Step 1. Free a read-write file after checks, but before writing to

disk

al e writing to

Step 2. Allocate a read-only file in the freed memory slot

al / slot

Result: Writing content to read-only files

Challenges

- 1. How to **free** credentials.
- 2. How to allocate *privileged* credentials as *unprivileged* users. (attacking *task* credentials)
- 3. How to finish attack in a **small** time window. (attacking open *file* credentials)

Challenges

1. How to **free** credentials.

- 2. How to allocate *privileged* credentials as *unprivileged* users. (attacking *task* credentials)
- 3. How to finish attack in a **small** time window. (attacking open *file* credentials)

Challenge 1: Free Credentials Invalidly

- Both cred and file object are in dedicated caches
- Most vulnerabilities happens in generic caches

Challenge 1: Free Credentials Invalidly

- Solution: Pivoting Vulnerability Capability
 - Pivoting Invalid-Write (e.g., OOB & UAF write)
 - Pivoting Invalid-Free (e.g., Double-Free)

Pivoting Invalid-Write

Pivoting Invalid-Write

• Leverage victim objects with a reference to credentials

rcu; *target key; *dest keyring; *cred; *callout_info; callout len; pid; op[8];

Pivoting Invalid-Write

Manipulate the memory layout to put the cred in the overwrite

0xff...000

0xff...100

Pivoting Invalid-Write

• **Partially** overwrite the pointer to cause a reference unbalance

0xff...000

0xff...100

Pivoting Invalid-Write

Free the credential object when freeing the victim object

Pivoting Invalid-Free

Pivoting Invalid-Free

• **Two** references to free the same object

Vulnerable object in kernel memory

Pivoting Invalid-Free

Step 1. Trigger the vuln, free the vuln object with one reference

Step 1. Trigger the vuln, free the vuln object with one reference

Step 2. Free the object in the memory cache to free the memory page

Step 3. Allocate credentials to reclaim the freed memory page (Cross Cache Attack)

Step 3. Allocate credentials to reclaim the freed memory page (Cross Cache Attack)

Step 4. Free the credentials with the left dangling reference

Credentials

Challenges

- 1. How to free credentials.
- 2. How to allocate *privileged* credentials as *unprivileged* users. (attacking *task* credentials)
- 3. How to finish attack in a **small** time window. (attacking open *file* credentials)

Challenge 2: Allocating Privileged Task Credentials

- Unprivileged users come with unprivileged task credentials
- Waiting privileged users to allocate task credentials influences the success rate

Challenge 2: Allocating Privileged Task Credentials

- Solution I: Triggering Privileged Userspace Process
 - Executables with root SUID (e.g. su, mount)
 - Daemons running as root (e.g. sshd)

Challenge 2: Allocating Privileged Task Credentials

- Solution I: Triggering Privileged Userspace Process
 - Executables with root SUID (e.g. su, mount)
 - Daemons running as root (e.g. sshd)
- Solution II: Triggering Privileged Kernel Thread
 - Kernel Workqueue spawn new workers
 - Usermode helper load kernel modules from userspace

Challenges

- 1. How to free credentials.
- 2. How to allocate *privileged* credentials as *unprivileged* users. (attacking *task* credentials)
- 3. How to finish attack in a **small** time window. (attacking open *file* credentials)

Challenge 3: Wining the race

Kernel will examine the access permission before writing to the

, writing to the

The swap of file object happens before permission check

The swap of file object happens before permission check

The swap of file object happens before permission check

• The swap of *file* object happens after *file write*.

• The swap of *file* object happens after *file write*.

• The swap of *file* object happens after *file write*.

• The swap happens in between *permission check* and *file write*

nd <u>file write</u>

• The swap happens in between *permission check* and *file write*

nd <u>file write</u>

• The swap happens in between *permission check* and *file write*

nd <u>file write</u>

The swap must happen after <u>permission check</u> and before <u>file</u>

- Solution I: Extending with Userfaultfd or FUSE
 - Pause kernel execution when accessing userspace memory

Solution I: Userfaultfd & FUSE

- Pause at *import_iovec* before v4.13
 - import iovec copies userspace memory

```
ssize_t vfs_writev(...)
{
    // permission checks
    if (!(file->f_mode & FMODE_WRITE))
        return -EBADF;
    if (!(file->f_mode & FMODE_CAN_WRITE))
        return -EINVAL;
```


Solution I: Userfaultfd & FUSE

- Pause at *import iovec* before v4.13
 - *import iovec* copies userspace memory
 - Used in Jann Horn's exploitation for <u>CVE-2016-4557</u>
 - Dead after v4.13

Solution I: Userfaultfd & FUSE

```
• vfs writev after v4.13
```

{

. . .

```
...
// import iovec to kernel, where kernel would be paused
// using userfaultfd
res = import_iovec(type, uvector, nr_segs,
```

```
ARRAY_SIZE(iovstack), &iov, &iter);
```

```
// permission checks
```

ssize_t vfs_writev(...)

```
if (!(file->f_mode & FMODE_WRITE))
    return -EBADF;
if (!(file->f_mode & FMODE_CAN_WRITE))
    return -EINVAL;
...
// do file writev
```

}

Solution I: Userfaultfd & FUSE

- Pause at generic perform write
 - prefaults user pages
 - **Pauses** kernel execution at the page fault

```
ssize_t generic_perform_write(struct file *file,
                struct iov_iter *i, loff_t pos)
```

```
/*
* Bring in the user page that we will copy from _first_.
 * up-to-date.
 */
if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
    status = -EFAULT;
    break:
// call the write operation of the file system
                    &page, &fsdata);
```

* Otherwise there's a nasty deadlock on copying from the * same page as we're writing to, without it being marked

status = a_ops->write_begin(file, mapping, pos, bytes, flags,

Challenge 3: Wining the race

- Solution I: Extending with Userfaultfd & FUSE
 - Pause kernel execution when accessing userspace memory
 - Userfaultfd & FUSE might not be available
- Solution II: Extending with file lock
 - Pause kernel execution with lock

Solution II: File Lock

- A lock of the *inode* of the file
- Lock the file when it is being writing to

A large time window

Demo Time!

CVE-2021-4154

Centos 8 and Ubuntu 20

Android Kernel with CFI enabled*

oriole:/data/local/tmp \$

* access check removed for demonstration

Real-World Impact

- <u>CVE-2021-4154</u>
 - Received rewards from Google's KCTF
 - The exploit works across kernel v4.18 ~ v5.10
- <u>CVE-2022-2588</u>
 - Pwn2own exploitation
 - The exploit works across kernel v3.17 ~ v5.19
- CVE-2022-20409
 - Received rewards from Google's KCTF and Android
 - The exploit works on both Android and generic Linux kernel

Advantages of DirtyCred

- Simple but effective
 - Shorter exploit chain with fewer steps
- No effective mitigation
 - A new exploitation path, can bypass AUTOSLAB
 - No need to deal with KASLR, KCFI, KPTI, SMAP/SMEP
- Exploitation friendly
 - Make your exploit **universal**!

Defense Against DirtyCred

- Fundamental problem
 - Object isolation is based on type not privilege
- Solution
 - Isolate privileged credentials from unprivileged ones
- Where to isolate?
 - Virtual memory (privileged credentials will be vmalloc-ed)

Code is available at https://github.com/markakd/DirtyCred

Overhead of The Defense

Benchmark	Vanilla	Hardened	Overhead
Phoronix			
Apache (Reqs/s)	28603.29	29216.48	-2.14%
Sys-RAM (MB/s)	10320.08	10181.91	1.34%
Sys-CPU (Events/s)	4778.41	4776.69	0.04%
FFmpeg(s)	7.456	7.499	0.58%
OpenSSL (Byte/s)	1149941360	1150926390	-0.09%
OpenSSL (Sign/s)	997.2	993.2	0.40%
PHPBench (Score)	571583	571037	0.09%
PyBench (ms)	1303	1311	0.61%
GIMP (s)	12.357	12.347	-0.08%
PostMark (TPS)	5034	5034	0%
LMBench			
Context Switch (ms)	2.60	2.57	-1.15%
UDP (ms)	9.2	9.26	0.65%
TCP (ms)	12.75	12.73	-0.16%
10k File Create (ms)	13.8	14.79	7.17%
10k File Delete (ms)	6.35	6.62	4.25%
Mmap (ms)	80.23	81.91	2.09%
Pipe (MB/s)	4125.3	4028.9	2.34%
AF Unix (MB/s)	8423.5	8396.7	0.32%
TCP (MB/s)	6767.4	6693.3	1.09%
File Reread (MB/s)	8380.43	8380.65	0%
Mmap Reread (MB/s)	15.7K	15.69K	0.06%
Mem Read (MB/s)	10.9K	10.9K	0%
Mem Write (MB/s)	10.76K	10.77K	-0.09%

Takeaways

- A new exploitation concept DirtyCred
- Principled approaches to different challenges
- A way to produce Universal kernel exploits
- Effective defense with negligible overhead

Zhenpeng Lin (<u>@Markak</u>)

https://zplin.me

zplin@u.northwestern.edu

