DirtyCred: Escalating Privilege In
Linux Kernel

Zhenpeng Lin

11/07/2022

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error

* Type confusion and memory overlap

Type A Type C Controlled Region
Type B Type B T c
ype
Type B Allocated Region Type A Type A

(a) Type confusion between Type A and B (b) Partial overlap between Type C and A

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

Type A Type C Controlled Region
Type B Type B
Type C Type A Type A
Type B Allocated Region

(a) Type confusion between Type A and B (b) Partial overlap between Type C and A

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error
Obtain Primitives

 Type confusion and memory overlap
» Leak kernel pointers

 Tamper kernel pointers
Type C Controlled Region

Type C
Allocated Region

fptr| Type A Type A

Partial overlap between Type C and A

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

» Leak kernel pointers
| Bypass Mitigation
 Tamper kernel pointers

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error
Obtain Primitives

» Type confusion and memory overlap
» Leak kernel pointers

| Bypass Mitigation
 Tamper kernel pointers

 Execute ROP in different formsy

[1] Joy of exploiting the kernel

http://slides.kernel.kitchen/

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error
Obtain Primitives

» Type confusion and memory overlap
» Leak kernel pointers

| Bypass Mitigation
 Tamper kernel pointers

* Execute ROP in different forms Escalate Privilege

[1] Joy of exploiting the kernel

http://slides.kernel.kitchen/

Northwestern

How Researchers Exploit Kernel Vulns

» Spatial/Temporal memory error
Obtain Primitives

» Type confusion and memory overlap
» Leak kernel pointers

| Bypass Mitigation
 Tamper kernel pointers

* Execute ROP in different forms Escalate Privilege

Used by 15/17 exploits in [2]

[1] Joy of exploiting the kernel [2] Kernel Exploit Recipes Notebook

http://slides.kernel.kitchen/
https://docs.google.com/document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit

Northwestern

How DirtyCred Exploits Kernel Vulns

» Spatial/Temporal memory error
* Type confusion and overlap

» Leak kernel pointers

 Tamper kernel pointers

» Execute ROP

Northwestern

How DirtyCred Exploits Kernel Vulns

» Spatial/Temporal memory error
| Obtain Primitives
» Type confusion and memory overlap
» Leak kernel pointers
 Tamper kernel pointers

 Execute ROP

Northwestern

How DirtyCred Exploits Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

Northwestern

How DirtyCred Exploit Kernel Vulns

» Spatial/Temporal memory error

. Obtain Primitives
* Type confusion and memory overlap

« Swap kernel credentials Escalate Privilege

Northwestern

Kernel Credential

* Properties that carry privilege information in kernel

» Defined in kernel documentation
* Representation of privilege and capability

» Two main types: task credentials and open file credentials

» Security checks act on credential objects

Source: https://www.kernel.org/doc/Documentation/security/credentials.txt

Northwestern

e Struct

Task Credential

cred In Linux kernel's implementation

struct cred {

#define
#define
#endif

atomic_t usage;
#ifdef CONFIG_DEBUG_CREDENTIALS
atomic_t subscribers;
void *put_addr;
unsigned magic;
CRED_MAGIC 0x43736564
CRED MAGIC_DEAD 0x44656144
kuid_t uid;
kgid_t gid;
kuid t suid;
kgid_t sgid;
kuid_t euid;
kgid_t egid;
kuid_t fsuid;
kgid_t fsgid;

/*

/*
/*
/*
/*
/*
/*
/*
/*

number of processes subscribed */

real UID of the task */

real GID of the task */
saved UID of the task */
saved GID of the task */
effective UID of the task */
effective GID of the task */
UID for VFS ops */

GID for VFS ops */

Northwestern

Task Credential

 Struct cred In Linux kernel's implementation

* Represents the privilege of kernel tasks

N ey

un- freed) privileged

R privileged privileged

Task Credential on kernel heap

Northwestern

How Linux Kernel Uses Task Credential

User Space
Privileged Operation Error
a P R
un- .
Kernel freed s privileged

Task Credential
8 Yy

Northwestern

How Linux Kernel Uses Task Credential

User Space
Privileged Operation Succ
a “«)
un- .
Kernel freed s privileged

Task Credential
8 Yy

Northwestern

Open File Credential

« Struct file in Linux kernel’'s implementation

struct file {

union {
struct llist_node f llist;
struct rcu_head f_rcuhead;
unsigned int f _iocb_flags;

}i

struct path f_path;

struct inode *f inode; /* cac

const struct file_operations *£f op;

/*

* Protects f ep, f flags.
* Must not be taken from IRQ context.

*/

spinlock_t f_lock;
atomic_long_t f _count;
unsigned int f flags;
fmode_t f_mode;
struct mutex £ _pos_lock;
loff_t f_pos;
struct fown_struct f_ownmer;
const struct cred *f cred;

struct file_ra_state f_ra;

Northwestern

Open File Credential

» Carries the information of opened files (e.g. mode, path, efc.)

open(“/tmp/a”, O_RDWR)

open(“/tmp/a”, O_RDONLY)

N

open(“/etc/passwd”’, O_RDONLY)

—

freed

/tmp/a

/tmp/a

letcl
passwd

Open File Credential on kernel heap

Read-write file

Read-only file

Northwestern

How Linux Kernel Uses Open File Credential

User Space
Write “Oxdeadbeef” to
the opened file Suce
4 v)

letc/) -
Kernel Itmpla passwd freed Read-only file

S~~——— : :
: : Read-write file

Open File Credential

_ J

Northwestern

How Linux Kernel Uses Open File Credential

User Space
Write “Oxdeadbeef” to
the opened file Error
e P h
letc/) -
Ker& Itmpla passwd freed Read-only file
— _ Read-write file
Open File Credential

_ J

Northwestern

Attacking Task Credential

............. User Space

a ')

un- . .
Kernel freed privileged privileged

Task Credential
_ _J

Northwestern

Attacking Task Credential

Step 1. Free the unprivileged credential with the vulnerability

............. User Space

4 "3,)
AP
Task Credential

_ _J

privileged

Kernel Rl o

d

Northwestern

Attacking Task Credential

Step 1. Free the unprivileged credential with the vulnerability

............. User Space

4 ')

Kernel freed freed |privileged

Task Credential
_ _J

Northwestern

Attacking Task Credential

Step 2. Allocate a privileged credential in the freed memory
slot

............. User Space

4 ')

Kernel freed |privileged |privileged

Task Credential
_ _J

Northwestern

Attacking Task Credential

Result: Becoming a privileged user

User Space
Privileged Operation /
—\ 3 A
Kernel freed |privileged |privileged

Task Credential
_ _J

Northwestern

Attacking Task Credential

Result: Becoming a privileged user

User Space

-
S
*
*
*
*
*
*
*
*
*
*
*
*
.
.
LS
.
.
Fy
\J
.
.
.

Privileged Operation / 3 Succ
N/

~

Kernel freed |privileged |privileged

Task Credential
_ _J

Northwestern

Attacking Open File Credential

User Space
Write “Oxdeadbeef” to
the opened file
N\ D A
Kernel tmpla tmpla freed Read-only file
T — : Read-write file
Open File Credential

_ _J

Northwestern

Attacking Open File Credential

Step 1. Free a read-write file after checks, but before writing to
disk

User Space

Write “Oxdeadbeef” to
the opened file

T\ \
a .

Ke r& ftmpla M freed Read-only file

__——v Readwrite fil

Open File Credential ead-write file

_ _J

Northwestern

Attacking Open File Credential

Step 1. Free a read-write file after checks, but before writing to

disk
User Space
Write “Oxdeadbeef” to
the opened file

T\ 2 A
Kernel Itmpl/a ltrgpl freed| freed Read-only file
T — _ Read-write file

Open File Credential

_ _J

Northwestern

Attacking Open File Credential

Step 2. Allocate a read-only file in the freed memory slot

User Space
Write “Oxdeadbeef” to
the opened file
N\ 2 A
Itmpl| letc/) :
Ker& Itmpla 8 pass freed Read-only file
— : Read-write file
Open File Credential

_ _J

Northwestern

Attacking Open File Credential

Result: Writing content to read-only files

User Space
Write “Oxdeadbeef” to Successfully x .
the opened file written to /etc/passwd
N 7 ‘- D
Itmpl| /etc/ :
Ker&/tmpla ap pass freed Read'only file
— : Read-write file
Open File Credential

_ _J

Northwestern

Challenges

1. How to free credentials.

2. How to allocate privileged credentials as unprivileged users.

(attacking task credentials)

3. How to finish attack in a small time window. (attacking open
file credentials)

Northwestern

Challenges

1. How to free credentials.

Northwestern

Challenge 1: Free Credentials Invalidly

* Both cred and file object are in dedicated caches

* Most vulnerabilities happens in generic caches

Northwestern

Challenge 1: Free Credentials Invalidly

 Solution: Pivoting Vulnerability Capability
 Pivoting Invalid-Write (e.g., OOB & UAF write)

* Pivoting Invalid-Free (e.g., Double-Free)

Northwestern

Pivoting Invalid-Write

Northwestern

Pivoting Invalid-Write

» Leverage victim objects with a reference to credentials

Oxff...000
credential struct request_key auth {
object struct rcu_head rcu;
struct key *target key;
struct key *dest_keyring;
const struct cred *crgéﬂ
void *callout_info;

*cred credential :
object size_t callout_len;
victim pid_t pid;
| char op[81;
sl OXff...100 o

} __randomize_layout;

credential
object

Northwestern

Pivoting Invalid-Write

* Manipulate the memory layout to put the cred in the overwrite

reg IOn Oxff...000 Oxff...000
credential credential
object object
overflow
object
*cred credential *cred credential
object object
victim vl victim
Selfere 0xff...100 ob object 0xff...100
credential credential
For OOB object For UAF object

Northwestern

Pivoting Invalid-Write

* Partially overwrite the pointer to cause a reference unbalance

Oxff...000 Oxff...000
credential credential
object object
overflow
obje?
*cre ... credential *cré credential
"""""" object _ object
victim vl victim
Selfere 0xff...100 ob object 0xff...100
credential credential
For OOB object For UAF object

Northwestern

Pivoting Invalid-Write

* Free the credential object when freeing the victim object

Oxff...000
/ rreed

credential
object

freed

Oxff...100

credential
object

Northwestern

Pivoting Invalid-Free

Northwestern

Pivoting Invalid-Free

* Two references to free the same object

ref_a\ﬁ‘_b

Freed | Allocated | Vuln Obj | Allocated

Vulnerable object in kernel memory

Northwestern

Pivoting Invalid-Free

N\

Freed Allocated Freed Allocated

Step 1. Trigger the vuln, free the vuln object
with one reference

Northwestern

Pivoting Invalid-Free

N\ N\

Freed | Allocated| Freed | Allocated Freed memory page

Step 1. Trigger the vuln, free the vuln object Step 2. Free the object in the memory cache
with one reference to free the memory page

Northwestern

Pivoting Invalid-Free

N\ N\

Freed | Allocated| Freed | Allocated Freed memory page

Step 1. Trigger the vuln, free the vuln object Step 2. Free the object in the memory cache
with one reference to free the memory page

N

Credentials|Credentials|Credentials|Credentials

Step 3. Allocate credentials to reclaim the
freed memory page (Cross Cache Attack)

Northwestern

Pivoting Invalid-Free

N\ N\

Freed | Allocated| Freed | Allocated Freed memory page

Step 1. Trigger the vuln, free the vuln object Step 2. Free the object in the memory cache

with one reference to free the memory page
\ p
Credentials|Credentials|Credentials|Credentials Credentials|Credentials Freeo_l Credentials
Credentials
Step 3. Allocate credentials to reclaim the Step 4. Free the credentials with the left

freed memory page (Cross Cache Attack) dangling reference

Northwestern

Challenges

2. How to allocate privileged credentials as unprivileged users.

(attacking task credentials)

Northwestern

Challenge 2: Allocating Privileged Task Credentials

* Unprivileged users come with unprivileged task credentials

» Waiting privileged users to allocate task credentials
influences the success rate

Northwestern

Challenge 2: Allocating Privileged Task Credentials

* Solution I: Triggering Privileged Userspace Process
» Executables with root SUID (e.g. su, mount)

 Daemons running as root (e.g. sshd)

Northwestern

Challenge 2: Allocating Privileged Task Credentials

e Solution ll: Triggering Privileged Kernel Thread
« Kernel Workqueue — spawn new workers

» Usermode helper — load kernel modules from userspace

Northwestern

Challenges

3. How to finish attack in a small time window. (attacking open
file credentials)

Northwestern

Challenge 3: Wining the race

» Kernel will examine the access permission before writing to the

disk
User Space
Check perm
Write Syscall(3 Succ
N 7 ‘- D
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
\ ——» _ _
. : Read-write file
l Open File Credential
& _J

Northwestern

Challenge 3: Wining the race

* The swap of file object happens before permission check

Swapping User Space
|
Check perm
Write Syscall('
T\ 2 N
: : letc/) :
Write to disk Kernel tmpla passwd freed Read-only file
T — : Read-write file
Open File Credential
& _J

Northwestern

Challenge 3: Wining the race

* The swap of file object happens before permission check

Swapping User Space
Ghock o
Write Sysca” (3 Error
N7 ‘-)
Write to disk Kernel ftmpla | ;ztsf'/v o | freed Read-only file
T — : Read-write file
Open File Credential
. _

Northwestern

Challenge 3: Wining the race

* The swap of file object happens before permission check

Swapping User Space
Checkpem
Write Sysca” (3 Error
N/ 2 A
- Kernel [tmpl/a péztsilv d freed Read-only file
T — : Read-write file
Open File Credential
. Y,

Northwestern

Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall('
T\ 3)
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
1 . \ — . .
: . Read-write file
Swapping Open File Credential
v . Y

Northwestern

Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall(3 Succ
N >
Write ’:O disk Kernel tmpla tmpla freed Read-only file
Swapping \Open ﬁe Credential Read-write file
v N _

Northwestern

Challenge 3: Wining the race

* The swap of file object happens after file write.

User Space
Check perm
Write Syscall(3 Succ
N 7 ‘-)
Write to disk Kernel ftmpla | :;tgv o | freed Read-only file
I . \ - . .
: : Read-write file
Swapping Open File Credential
v . Y

Northwestern

Challenge 3: Wining the race

* The swap happens in between permission check and file write

User Space
Check perm
Write Syscall('
T\ 2 R
Write to disk Ke rnel /tmpla /tmpla freed Read'only file
. ; Read-write file
l Open File Credential
_ _J

Northwestern

Challenge 3: Wining the race

* The swap happens in between permission check and file write

User Space
Check perm
I Write Syscall('
Swapping
: : letc/) :
Write to disk Kernel tmpla passwd freed Read-only file
T — : Read-write file
Open File Credential
& _J

Northwestern

Challenge 3: Wining the race

* The swap happens in between permission check and file write

User Space
Check perm
I Write Syscall(3 Succ
Swapping
| N 7 : D
Write to disk Kernel ftmpla | :;tgv o | freed Read-only file
T — : Read-write file
Open File Credential
_ _J

Northwestern

Challenge 3: Wining the race

* The swap must happen after permission check and before file

write
User Space
Check perm
Write Syscall(“
The time windgw
"\ : \
Write to disk Kernel ftmpla | /tmpla | freed Read-only file
Read-write fil
l Open File Credential ead-write file
- J

Northwestern

Challenge 3: Wining the race

e Solution I: Extending with Userfaultfd or FUSE

* Pause kernel execution when accessing userspace memory

Northwestern

Solution |: Userfaultfd & FUSE

» Pause at import iovec before v4.13

* import iovec COpIes userspace memory

ssize_t vfs_writev(...)

{

// permission checks

if (!(file->f_mode & FMODE_WRITE))
return -EBADF;

if (!(file->f_mode & FMODE_CAN_WRITE))
return -EINVAL;

// import iovec to kernel, where kernel would be paused

// using userfaultfd & FUSE

res = import_iovec(type, uvector, nr_segs,
ARRAY_SIZE(iovstack), &iov, &iter);

// do file writev

Northwestern

Solution |: Userfaultfd & FUSE

» Pause at import iovec before v4.13
* import iovec COpIes userspace memory

» Used in Jann Horn'’s exploitation for CVE-2016-4557
* Dead after v4.13

https://bugs.chromium.org/p/project-zero/issues/detail?id=808

Northwestern

Solution |: Userfaultfd & FUSE

e vfs writev after v4.13

ssize_t vfs_writev(...)

{

// import iovec to kernel, where kernel would be paused

// using userfaultfd

res = import_iovec(type, uvector, nr_segs,
ARRAY_SIZE(iovstack), &iov, &iter);

// permission checks

if (!(file->f_mode & FMODE_WRITE))
return -EBADF;

if (!(file->f_mode & FMODE_CAN_WRITE))
return -EINVAL;

// do file writev

Northwestern

Solution |: Userfaultfd & FUSE

* Pause at generic perform write

ssize_t generic_perform_write(struct file *file,

[prefaUItS user pages (struct iov_iter *i, loff_t pos)

* Bring in the user page that we will copy from _first_.
°® " * Otherwise there's a nasty deadlock on copying from the

Pauses kernel exeCUtlon at the * same page as we're writing to, without it being marked
* up-to-date.

*x/
page faUIt if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
status = -EFAULT;
break;
3

// call the write operation of the file system
status = a_ops->write_begin(file, mapping, pos, bytes, flags,
&page, &fsdata);

Northwestern

Challenge 3: Wining the race

* Solution ll: Extending with file lock

« Pause kernel execution with lock

Northwestern

Solution ll: File Lock

* A lock of the inode of the file

* Lock the file when it is being writing to

static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,

{

struct iov_iter *from)

ssize_t ret;
struct inode *inode = file_inode(iocb->ki_filp);

inode_lock(inode);

ret = generic_perform_write(iocb->ki_filp, from,
— iocb->ki_pos);

inode_unlock(inode);

return ret;

Northwestern

Solution ll: File Lock

Thread A Thread B
cnedcpem chekper

Lock

Unlock Lock

l

—
I
Unlock

v

Northwestern

Solution ll: File Lock

Thread A Thread B
cnedcpem chekper

Lock

A large time window

Northwestern

Demo Time!

Northwestern

CVE-2021-4154

Northwestern

| Centos 8 and Ubuntu 20

uuuuuuuuuu :~$ idf]

Northwestern

Android Kernel with CFl enabled*

oriole:/data/local/tmp $

* access check removed for demonstration

Northwestern

Real-World Impact

« CVE-2021-4154
* Received rewards from Google’'s KCTF

* The exploit works across kernel v4.18 ~ v5.10
e CVE-2022-2588
* Pwn2own exploitation
* The exploit works across kernel v3.17 ~ v5.19
« CVE-2022-20409
* Received rewards from Google’s KCTF and Android
* The exploit works on both Android and generic Linux kernel

https://github.com/Markakd/CVE-2021-4154
https://github.com/Markakd/CVE-2022-2588

Northwestern

Advantages of DirtyCred

 Simple but effective
» Shorter exploit chain with fewer steps

* No effective mitigation
* A new exploitation path, can bypass AUTOSLAB

* No need to deal with KASLR, KCFI, KPTIl, SMAP/SMEP

 Exploitation friendly

« Make your exploit universal!

Northwestern

Defense Against DirtyCred

* Fundamental problem

* Object isolation is based on type not privilege
e Solution

* |solate privileged credentials from unprivileged ones
* Where to isolate?

* Virtual memory (privileged credentials will be vmalloc-ed)

Code is available at https://github.com/markakd/DirtyCred

https://github.com/markakd/DirtyCred

Northwestern

Overhead of The Defense

Benchmark Vanilla Hardened Overhead
Phoronix
Apache (Regs/s) 28603.29 29216.48 -2.14%
Sys-RAM (MB/s) 10320.08 10181.91 1.34%
Sys-CPU (Events/s) 4778.41 4776.69 0.04%
FFmpeg(s) 7.456 7.499 0.58%
OpenSSL (Byte/s) 1149941360 1150926390 -0.09%
OpenSSL (Sign/s) 997.2 993.2 0.40%
PHPBench (Score) 571583 571037 0.09%
PyBench (ms) 1303 1311 0.61%
GIMP (s) 12.357 12.347 -0.08%
PostMark (TPS) 5034 5034 0%
LMBench
Context Switch (ms) 2.60 2.57 -1.15%
UDP (ms) 9.2 9.26 0.65%
TCP (ms) 12.75 12.73 -0.16%
10k File Create (ms) 13.8 14.79 7.17%
10k File Delete (ms) 6.35 6.62 4.25%
Mmap (ms) 80.23 81.91 2.09%
Pipe (MB/s) 4125.3 4028.9 2.34%
AF Unix (MB/s) 8423.5 8396.7 0.32%
TCP (MBY/s) 6767.4 6693.3 1.09%
File Reread (MB/s) 8380.43 8380.65 0%
Mmap Reread (MB/s) 15.7K 15.69K 0.06%
Mem Read (MB/s) 10.9K 10.9K 0%

Mem Write (MB/s) 10.76K 10.77K -0.09%

Northwestern

Takeaways

* A new exploitation concept — DirtyCred
* Principled approaches to different challenges -
A way to produce Universal kernel exploits .,"fef 2

o Effective defense with negligible overhead

Zhenpeng Lin (@Markak)

https://zplin.me g PR

20 EIDL B

zplin@u.northwestern.edu

Logo comes from @sirdarckcat

https://twitter.com/markak_?lang=en
https://zplin.me
https://twitter.com/sirdarckcat

