
Cautious! A New Exploitation Method!
No Pipe but as Nasty as Dirty Pipe

Northwestern University

DirtyCred: Escalating Privilege in

Linux Kernel

Zhenpeng Lin

11/07/2022

#DirtyCred

Zhenpeng Lin

@Markak_

• Spatial/Temporal memory error

• Type confusion and memory overlap

How Researchers Exploit Kernel Vulns

Type A

Type AType C

Allocated Region

Type B Type B

Type B

(a) Type confusion between Type A and B (b) Partial overlap between Type C and A

Type A

Type C Controlled Region

#DirtyCred

Zhenpeng Lin

@Markak_

Obtain Primitives
• Spatial/Temporal memory error

• Type confusion and memory overlap

How Researchers Exploit Kernel Vulns

Type A

Type AType C

Allocated Region

Type B Type B

Type B

(a) Type confusion between Type A and B (b) Partial overlap between Type C and A

Type A

Type C Controlled Region

#DirtyCred

Zhenpeng Lin

@Markak_

Obtain Primitives
• Spatial/Temporal memory error

• Type confusion and memory overlap

• Leak kernel pointers

• Tamper kernel pointers

How Researchers Exploit Kernel Vulns

Type AType C

Allocated Region

Partial overlap between Type C and A

Type A

Type C Controlled Region

fptr

#DirtyCred

Zhenpeng Lin

@Markak_

Bypass Mitigation

Obtain Primitives
• Spatial/Temporal memory error

• Type confusion and memory overlap

• Leak kernel pointers

• Tamper kernel pointers

How Researchers Exploit Kernel Vulns

#DirtyCred

Zhenpeng Lin

@Markak_

Bypass Mitigation

Obtain Primitives
• Spatial/Temporal memory error

• Type confusion and memory overlap

• Leak kernel pointers

• Tamper kernel pointers

• Execute ROP in different forms[1]

How Researchers Exploit Kernel Vulns

[1] Joy of exploiting the kernel

http://slides.kernel.kitchen/

#DirtyCred

Zhenpeng Lin

@Markak_

• Spatial/Temporal memory error

• Type confusion and memory overlap

• Leak kernel pointers

• Tamper kernel pointers

• Execute ROP in different forms[1]

How Researchers Exploit Kernel Vulns

Obtain Primitives

Bypass Mitigation

Escalate Privilege

[1] Joy of exploiting the kernel

http://slides.kernel.kitchen/

#DirtyCred

Zhenpeng Lin

@Markak_

• Spatial/Temporal memory error

• Type confusion and memory overlap

• Leak kernel pointers

• Tamper kernel pointers

• Execute ROP in different forms[1]

How Researchers Exploit Kernel Vulns

Obtain Primitives

Bypass Mitigation

Escalate Privilege

Used by 15/17 exploits in [2]
[1] Joy of exploiting the kernel [2] Kernel Exploit Recipes Notebook

http://slides.kernel.kitchen/
https://docs.google.com/document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit

#DirtyCred

Zhenpeng Lin

@Markak_

• Spatial/Temporal memory error

• Type confusion and overlap

• Leak kernel pointers

• Tamper kernel pointers

• Execute ROP

How DirtyCred Exploits Kernel Vulns

#DirtyCred

Zhenpeng Lin

@Markak_

• Spatial/Temporal memory error

• Type confusion and memory overlap

• Leak kernel pointers

• Tamper kernel pointers

• Execute ROP

How DirtyCred Exploits Kernel Vulns

Obtain Primitives

#DirtyCred

Zhenpeng Lin

@Markak_

• Spatial/Temporal memory error

• Type confusion and memory overlap

• Leak kernel pointers

• Tamper kernel pointers

• Execute ROP

How DirtyCred Exploits Kernel Vulns

Obtain Primitives

#DirtyCred

Zhenpeng Lin

@Markak_

• Spatial/Temporal memory error

• Type confusion and memory overlap

• Swap kernel credentials

How DirtyCred Exploit Kernel Vulns

Obtain Primitives

Escalate Privilege

#DirtyCred

Zhenpeng Lin

@Markak_

Kernel Credential
• Properties that carry privilege information in kernel

• Defined in kernel documentation

• Representation of privilege and capability

• Two main types: task credentials and open file credentials

• Security checks act on credential objects

Source: https://www.kernel.org/doc/Documentation/security/credentials.txt

#DirtyCred

Zhenpeng Lin

@Markak_

• Struct cred in Linux kernel’s implementation

Task Credential

#DirtyCred

Zhenpeng Lin

@Markak_

freed

• Struct cred in Linux kernel’s implementation

•Represents the privilege of kernel tasks

Task Credential

un-

privileged

un-

privileged privilegedfreed

Task Credential on kernel heap

freed

#DirtyCred

Zhenpeng Lin

@Markak_

How Linux Kernel Uses Task Credential

un-

privilegedfreed

Task Credential

User Space

Kernel

Privileged Operation Error

privileged

#DirtyCred

Zhenpeng Lin

@Markak_

How Linux Kernel Uses Task Credential

un-

privilegedfreed

Task Credential

User Space

Kernel

Privileged Operation Succ

privileged

#DirtyCred

Zhenpeng Lin

@Markak_

Open File Credential
• Struct file in Linux kernel’s implementation

#DirtyCred

Zhenpeng Lin

@Markak_

Open File Credential
• Carries the information of opened files (e.g. mode, path, etc.)

/tmp/a /tmp/a /etc/
passwdfreed

Open File Credential on kernel heap

open(“/tmp/a”, O_RDWR)
 open(“/tmp/a”, O_RDONLY) open(“/etc/passwd”, O_RDONLY)

Read-write file

Read-only file

#DirtyCred

Zhenpeng Lin

@Markak_

How Linux Kernel Uses Open File Credential

freed

Open File Credential

freed

User Space

Kernel

Write “0xdeadbeef” to

A the opened file Succ

/tmp/a Read-only file

Read-write file

/etc/
passwd

#DirtyCred

Zhenpeng Lin

@Markak_

How Linux Kernel Uses Open File Credential

freed

Open File Credential

freed

User Space

Kernel

Write “0xdeadbeef” to

A the opened file Error

/tmp/a Read-only file

Read-write file

/etc/
passwd

#DirtyCred

Zhenpeng Lin

@Markak_

Attacking Task Credential

un-

privilegedfreed

Task Credential

User Space

Kernel privileged

#DirtyCred

Zhenpeng Lin

@Markak_

Step 1. Free the unprivileged credential with the vulnerability

Attacking Task Credential

un-

privilegedfreed

Task Credential

User Space

Kernel privileged

#DirtyCred

Zhenpeng Lin

@Markak_

Step 1. Free the unprivileged credential with the vulnerability

Attacking Task Credential

freed

Task Credential

Kernel privilegedfreed

User Space

#DirtyCred

Zhenpeng Lin

@Markak_

Step 2. Allocate a privileged credential in the freed memory
slot

Attacking Task Credential

freed

Task Credential

Kernel privilegedfreedprivileged

User Space

#DirtyCred

Zhenpeng Lin

@Markak_

Result: Becoming a privileged user

Attacking Task Credential

freed

Task Credential

Kernel privilegedfreedprivileged

Privileged Operation

User Space

#DirtyCred

Zhenpeng Lin

@Markak_

Result: Becoming a privileged user

Attacking Task Credential

freed

Task Credential

Kernel privilegedfreedprivileged

Privileged Operation Succ

User Space

#DirtyCred

Zhenpeng Lin

@Markak_

Attacking Open File Credential

freed

Open File Credential

freed

User Space

Kernel

Write “0xdeadbeef” to

A the opened file

/tmp/a Read-only file

Read-write file

/tmp/a

#DirtyCred

Zhenpeng Lin

@Markak_

Step 1. Free a read-write file after checks, but before writing to
disk

Attacking Open File Credential

freed

Open File Credential

freed

User Space

Kernel

Write “0xdeadbeef” to

A the opened file

/tmp/a Read-only file

Read-write file

/tmp/a

#DirtyCred

Zhenpeng Lin

@Markak_

Step 1. Free a read-write file after checks, but before writing to
disk

Attacking Open File Credential

freed

Open File Credential

freed

User Space

Kernel

Write “0xdeadbeef” to

A the opened file

/tmp/a Read-only file

Read-write file

/tmp/
a freed

#DirtyCred

Zhenpeng Lin

@Markak_

Step 2. Allocate a read-only file in the freed memory slot

Attacking Open File Credential

freed

Open File Credential

freed

User Space

Kernel

Write “0xdeadbeef” to

A the opened file

/tmp/a Read-only file

Read-write file

/tmp/
a

/etc/
pass

#DirtyCred

Zhenpeng Lin

@Markak_

Result: Writing content to read-only files

Attacking Open File Credential

freed

Open File Credential

freed

User Space

Kernel

Write “0xdeadbeef” to

A the opened file

/tmp/a Read-only file

Read-write file

/tmp/
a

Successfully

written to /etc/passwd

/etc/
pass

#DirtyCred

Zhenpeng Lin

@Markak_

Challenges
1. How to free credentials.

2. How to allocate privileged credentials as unprivileged users.
(attacking task credentials)

3. How to finish attack in a small time window. (attacking open
file credentials)

#DirtyCred

Zhenpeng Lin

@Markak_

Challenges
1. How to free credentials.

2. How to allocate privileged credentials as unprivileged users.
(attacking task credentials)

3. How to finish attack in a small time window. (attacking open
file credentials)

#DirtyCred

Zhenpeng Lin

@Markak_

Challenge 1: Free Credentials Invalidly
• Both cred and file object are in dedicated caches

• Most vulnerabilities happens in generic caches

obj_a obj_b obj_ckmalloc-256

cred cred cred

file file filefilp

cred_jar

#DirtyCred

Zhenpeng Lin

@Markak_

Challenge 1: Free Credentials Invalidly
• Solution: Pivoting Vulnerability Capability

• Pivoting Invalid-Write (e.g., OOB & UAF write)

• Pivoting Invalid-Free (e.g., Double-Free)

#DirtyCred

Zhenpeng Lin

@Markak_

Pivoting Invalid-Write

#DirtyCred

Zhenpeng Lin

@Markak_

• Leverage victim objects with a reference to credentials

Pivoting Invalid-Write

victim

object

credential 
object

credential 
object

credential 
object

*cred

0xff…000

0xff…100

#DirtyCred

Zhenpeng Lin

@Markak_

• Manipulate the memory layout to put the cred in the overwrite
region

vuln

object

victim

object

*cred

Pivoting Invalid-Write

victim

object

credential 
object

credential 
object

credential 
object

*cred

0xff…000

0xff…100

overflow

object

credential 
object

credential 
object

credential 
object

0xff…000

0xff…100

For OOB For UAF

#DirtyCred

Zhenpeng Lin

@Markak_

• Partially overwrite the pointer to cause a reference unbalance

credential 
object

vuln

object

victim

object

*cred

Pivoting Invalid-Write

victim

object

credential 
object

credential 
object

*cred

0xff…000

0xff…100

overflow

object

credential 
object

credential 
object

credential 
object

0xff…000

0xff…100

For OOB For UAF

credential 
object

credential 
object

#DirtyCred

Zhenpeng Lin

@Markak_

• Free the credential object when freeing the victim object

Pivoting Invalid-Write

freed

credential 
object

credential 
object

freed

0xff…000

0xff…100

#DirtyCred

Zhenpeng Lin

@Markak_

Pivoting Invalid-Free

#DirtyCred

Zhenpeng Lin

@Markak_

• Two references to free the same object

Pivoting Invalid-Free

Freed Allocated AllocatedVuln Obj

ref_a ref_b

Vulnerable object in kernel memory

#DirtyCred

Zhenpeng Lin

@Markak_

Pivoting Invalid-Free

Freed Allocated AllocatedFreed

Step 1. Trigger the vuln, free the vuln object

with one reference

#DirtyCred

Zhenpeng Lin

@Markak_

Pivoting Invalid-Free

Freed Allocated AllocatedFreed Freed memory page

Step 1. Trigger the vuln, free the vuln object

with one reference

Step 2. Free the object in the memory cache
to free the memory page

#DirtyCred

Zhenpeng Lin

@Markak_

Pivoting Invalid-Free

Freed Allocated AllocatedFreed Freed memory page

Credentials Credentials CredentialsCredentials

Step 1. Trigger the vuln, free the vuln object

with one reference

Step 2. Free the object in the memory cache
to free the memory page

Step 3. Allocate credentials to reclaim the
freed memory page (Cross Cache Attack)

#DirtyCred

Zhenpeng Lin

@Markak_

Pivoting Invalid-Free

Freed Allocated AllocatedFreed Freed memory page

Credentials Credentials CredentialsFreed

CredentialsCredentials Credentials CredentialsCredentials

Step 1. Trigger the vuln, free the vuln object

with one reference

Step 2. Free the object in the memory cache
to free the memory page

Step 3. Allocate credentials to reclaim the
freed memory page (Cross Cache Attack)

Step 4. Free the credentials with the left

dangling reference

#DirtyCred

Zhenpeng Lin

@Markak_

Challenges
1. How to free credentials.

2. How to allocate privileged credentials as unprivileged users.
(attacking task credentials)

3. How to finish attack in a small time window. (attacking open
file credentials)

#DirtyCred

Zhenpeng Lin

@Markak_

Challenge 2: Allocating Privileged Task Credentials

• Unprivileged users come with unprivileged task credentials

• Waiting privileged users to allocate task credentials
influences the success rate

#DirtyCred

Zhenpeng Lin

@Markak_

Challenge 2: Allocating Privileged Task Credentials

• Solution I: Triggering Privileged Userspace Process

• Executables with root SUID (e.g. su, mount)

• Daemons running as root (e.g. sshd)

#DirtyCred

Zhenpeng Lin

@Markak_

Challenge 2: Allocating Privileged Task Credentials

• Solution I: Triggering Privileged Userspace Process

• Executables with root SUID (e.g. su, mount)

• Daemons running as root (e.g. sshd)

• Solution II: Triggering Privileged Kernel Thread

• Kernel Workqueue — spawn new workers

• Usermode helper — load kernel modules from userspace

#DirtyCred

Zhenpeng Lin

@Markak_

Challenges
1. How to free credentials.

2. How to allocate privileged credentials as unprivileged users.
(attacking task credentials)

3. How to finish attack in a small time window. (attacking open
file credentials)

#DirtyCred

Zhenpeng Lin

@Markak_

• Kernel will examine the access permission before writing to the
disk

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Write to disk

Succ

/tmp/a

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap of file object happens before permission check

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Write to disk

Swapping

/etc/
passwd

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap of file object happens before permission check

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Write to disk

Error

Swapping

/etc/
passwd

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap of file object happens before permission check

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Write to disk

Error

Swapping

/etc/
passwd

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap of file object happens after file write.

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Do the write

Swapping

Write to disk /tmp/a

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap of file object happens after file write.

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Do the write

Succ

Swapping

Write to disk /tmp/aWrite to disk

Check perm

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap of file object happens after file write.

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Do the write

Succ

Swapping

Write to disk /etc/
passwd

Write to disk

Check perm

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap happens in between permission check and file write

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Write to disk /tmp/a

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap happens in between permission check and file write

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Write to disk

Swapping

/etc/
passwd

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap happens in between permission check and file write

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Write to disk

Swapping
Succ

/etc/
passwd

#DirtyCred

Zhenpeng Lin

@Markak_

• The swap must happen after permission check and before file
write

Challenge 3: Wining the race

User Space

freed

Open File Credential

freed

User Space

Kernel

Write Syscall

/tmp/a Read-only file

Read-write file

Check perm

Write to disk

The time window

/tmp/a

#DirtyCred

Zhenpeng Lin

@Markak_

Challenge 3: Wining the race
• Solution I: Extending with Userfaultfd or FUSE

• Pause kernel execution when accessing userspace memory

#DirtyCred

Zhenpeng Lin

@Markak_

Solution I: Userfaultfd & FUSE
• Pause at import_iovec before v4.13

• import_iovec copies userspace memory

#DirtyCred

Zhenpeng Lin

@Markak_

Solution I: Userfaultfd & FUSE
• Pause at import_iovec before v4.13

• import_iovec copies userspace memory

• Used in Jann Horn’s exploitation for CVE-2016-4557

• Dead after v4.13

https://bugs.chromium.org/p/project-zero/issues/detail?id=808

#DirtyCred

Zhenpeng Lin

@Markak_

Solution I: Userfaultfd & FUSE
• vfs_writev after v4.13

#DirtyCred

Zhenpeng Lin

@Markak_

Solution I: Userfaultfd & FUSE
• Pause at generic_perform_write

• prefaults user pages

• Pauses kernel execution at the
page fault

#DirtyCred

Zhenpeng Lin

@Markak_

Challenge 3: Wining the race
• Solution I: Extending with Userfaultfd & FUSE

• Pause kernel execution when accessing userspace memory

• Userfaultfd & FUSE might not be available

• Solution II: Extending with file lock

• Pause kernel execution with lock

#DirtyCred

Zhenpeng Lin

@Markak_

• A lock of the inode of the file

• Lock the file when it is being writing to

Solution II: File Lock

#DirtyCred

Zhenpeng Lin

@Markak_

Solution II: File Lock

Thread A Thread B
check perm

Lock

Unlock

Do the write

check perm

Lock

Unlock

Do the write

#DirtyCred

Zhenpeng Lin

@Markak_

Solution II: File Lock

check perm

Lock

Unlock

Do the write
(write 4GB)

check perm

Lock

Unlock

Do the write

Thread A Thread B

A large time window

#DirtyCred

Zhenpeng Lin

@Markak_

Demo Time!

#DirtyCred

Zhenpeng Lin

@Markak_

CVE-2021-4154

#DirtyCred

Zhenpeng Lin

@Markak_

Centos 8 and Ubuntu 20

#DirtyCred

Zhenpeng Lin

@Markak_

Android Kernel with CFI enabled*

* access check removed for demonstration

#DirtyCred

Zhenpeng Lin

@Markak_

Real-World Impact
• CVE-2021-4154

• Received rewards from Google’s KCTF

• The exploit works across kernel v4.18 ~ v5.10

• CVE-2022-2588

• Pwn2own exploitation

• The exploit works across kernel v3.17 ~ v5.19

• CVE-2022-20409

• Received rewards from Google’s KCTF and Android

• The exploit works on both Android and generic Linux kernel

https://github.com/Markakd/CVE-2021-4154
https://github.com/Markakd/CVE-2022-2588

#DirtyCred

Zhenpeng Lin

@Markak_

Advantages of DirtyCred
• Simple but effective

• Shorter exploit chain with fewer steps

• No effective mitigation

• A new exploitation path, can bypass AUTOSLAB

• No need to deal with KASLR, KCFI, KPTI, SMAP/SMEP

• Exploitation friendly

• Make your exploit universal!

#DirtyCred

Zhenpeng Lin

@Markak_

Defense Against DirtyCred
• Fundamental problem

• Object isolation is based on type not privilege

• Solution

• Isolate privileged credentials from unprivileged ones

• Where to isolate?

• Virtual memory (privileged credentials will be vmalloc-ed)

Code is available at https://github.com/markakd/DirtyCred

https://github.com/markakd/DirtyCred

#DirtyCred

Zhenpeng Lin

@Markak_

Overhead of The Defense

#DirtyCred

Zhenpeng Lin

@Markak_

Takeaways
• A new exploitation concept — DirtyCred

• Principled approaches to different challenges

• A way to produce Universal kernel exploits

• Effective defense with negligible overhead

Zhenpeng Lin (@Markak_)

https://zplin.me

zplin@u.northwestern.edu
Logo comes from @sirdarckcat

https://twitter.com/markak_?lang=en
https://zplin.me
https://twitter.com/sirdarckcat

