
Finding Multiple Bug Effects for More Precise
Exploitability Estimation

Zhenpeng Lin & Yueqi Chen
The Pennsylvania State University

Kernel bugs found by Syzkaller

• syzbot: continuous kernel fuzzing
– Public

– ~4400 bugs for 4 years

– ~3000 fixed bugs, ~1000 open bugs

– Exploitability of these bugs are unknown
• zero day in upstream

• zero day in vendors’ kernel

https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream

Exploitability

• Estimate the consequence of bugs
• Promote bug fixes and fixes adoption
• Guide the design of hardening

Challenges of knowing exploitability

• Proving exploitability is hard
– write the exploit!

• Proving unexploitability?
– is even harder
– no path leading to exploitation
– talked by some academic research
– not realistic for kernel

http://www.dullien.net/thomas/weird-machines-exploitability.pdf

Exploitability approximation
• Approximate the likelihood of exploitation
• Based on the read/write ability of UAF/OOB bugs?

– No
– Exploitability of UAF

• Transfer UAF object to others
• From UAF bugs to information leaking

– Exploitability of OOB
• Exploit kernel with 4 zero-bytes overflow

https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://github.com/xairy/kernel-exploits/tree/master/CVE-2017-6074
http://www.personal.psu.edu/yxc431/talks/Bypassing-Many-Kernel-Protections-Using-Elastic-Objects.pdf
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html

Exploitability approximation (cont.)

• Based on the type of bug
– Likely to exploit

• UAF, double/invalid free
• OOB

– Less likely to exploit
• WARNING
• INFO
• GPF
• Null-ptr-deference
• ...

The reliability of approximation

• How bugs are underestimated
– severe bug doesn’t show memory corruption
– severe bug shows limited memory corruption ability

• How to improve the reliability
– Find the true effect of bugs

Exploitability being underestimated
• Syzkaller generates incomplete errors

– Misses KASAN errors when “panic_on_warn” is set

Exploitability being underestimated

WARNING in xfrm_state_fini v.s. KASAN: use-after-free Read in __lock_acquire

KASAN error is not shown

https://syzkaller.appspot.com/bug?id=f99edaeec58ad40380ed5813d89e205861be2896

Exploitability being underestimated
• Syzkaller generates incomplete errors

– Misses KASAN errors when “panic_on_warn” is set
– Only reports first error kernel triggers

Exploitability being underestimated

KASAN error is ignored

WARNING: held lock freed!

https://syzkaller.appspot.com/bug?id=a8d38d1b68ffc744c53bd9b9fc1dbd6c86b1afe2

Exploitability being underestimated
• Incomplete error reported by Syzkaller

– Misses KASAN errors when “panic_on_warn” is set
– Only reports first error kernel triggers

• Multiple Error Behaviors (MEB)

root
cause

input WARNING KASAN error

Multiple Error Behaviors

• With the same root cause, but different errors at
different sites

WARNING: xxx :(

GPF: xxx :(

KASAN: UAF in xxx J

root
cause

Input 1

Input 2

Input 3

Exposing MEB to avoid underestimation

“Unexploitable” path v.s. “Exploitable” path

“Unexploitable” path v.s. “Exploitable” path

“Unexploitable” path v.s. “Exploitable” path

“Unexploitable” path v.s. “Exploitable” path

1. tun_attach with IFF_NAPI disabled
- no timer
- current napi not in the list

2. tun_detach with IFF_NAPI enabled
- cancel the timer

Null-ptr-def happens

“Unexploitable” path v.s. “Exploitable” path

1. tun_attach with IFF_NAPI enabled
- initialize the timer
- current napi lnked in the list

2. tun_detach with IFF_NAPI disabled
- napi still in the list
- napi freed by destroy(tfile)

3. free_netdev
- deference the dangling pointer

UAF happens

Exploitability of two behaviors

• Exploit the Null-ptr-dereference
– mapping at 0 is not allowed

• Exploit the UAF
§ netif_napi_del (napi)

§ kfree_skb(napi->skb)
§ napi->skb->destructor(napi->skb) (Hijack control flow)

Precise exploitability estimation needs to expose
Multiple Error Behaviors of bug.

Finding Multiple Error Behaviors

• Static analysis
– A lot of false positives
– No input

• Fuzzing
– Code-coverage feedback will detour the path
– How to restrict the fuzzing scope
– What is the proper fuzzing scope

Finding Multiple Error Behaviors (cont.)

• Some observations
– Linux kernel’s design is object-oriented
– Bugs result from incorrect usage of kernel object
– Incorrectness propagates to different places

• Object-driven kernel fuzzing
– Static analysis to find critical objects
– Under-scope fuzzing based on the reachability of

identified objects

https://lwn.net/Articles/444910/

Object-driven kernel fuzzing

• Static analysis to find critical objects

Object-driven kernel fuzzing (cont.)

• Static analysis to find critical objects

base = READ_ONCE(timer->base) in hrtimer_active

hrtimer_cancel(&tfile->napi->timer) in tun_detach

hrtimer_try_to_cancel(timer) in hrtimer_cancel

struct hrtimer

struct hrtimer

struct hrtimer,
struct napi_struct,

struct tun_file

Object-driven kernel fuzzing (cont.)

• Under-scope fuzzing based on Syzkaller
– Instrument basic blocks involved with critical objects
– Only inputs reaching these objects are interesting

Experiment setup

• 60 kernel bugs (2017-2021)

• Each cases comes with a patch

• 7 days for Syzkaller and our tool

• Manually categorize reports tied to the same bug

Experiment results

• Exploitability escalation
– less likely to exploit bug (44/60)

• 4 escalation found by Syzkaller
• 26 escalation found by our tool, 3 error behaviors on avg.

• More exploit potential
– likely to exploit bug (16/60)

• Syzkaller found 1 bug has other exploitable behaviors
• Our tool found 8 bugs have other exploitable behaviors

Takeaway

• A kernel bug could have Multiple Error Behaviors

• MEB contribute to more precise exploitability estimation

• Finding MEB automatically is possible

• Utilizing kernel objects to find MEB is effective and efficient.

Zhenpeng Lin (@Markak_)
https://zplin.me

Looking for summer internship!

https://zplin.me/

